To better understand the nature of reactive adsorption of thiophene on Ni/ZnO adsorbent,the effect of ZnO textural structure on the desulfurization activity was investigated.ZnO materials were synthesized by low-tempe...To better understand the nature of reactive adsorption of thiophene on Ni/ZnO adsorbent,the effect of ZnO textural structure on the desulfurization activity was investigated.ZnO materials were synthesized by low-temperature solid-state reaction and the corresponding Ni/ZnO adsorbents were prepared by incipient impregnation method.The analysis results showed that the crystalline sizes of ZnO as-synthesized as well as the BET surface areas varied obviously with the calcination temperature.The activity evaluations indicated that the Ni/ZnO adsorbents prepared with ZnO possessed a favorable textural structure as active component exhibited good activity of removing thiophene.The evolutions of the main crystalline phases of Ni/ZnO adsorbents before and after reaction confirmed that ZnO played a crucial role in taking up S element and converting it into ZnS in the reactive adsorption process.It was concluded that ZnO with larger surface area and smaller crystal particles resulted in better desulfurization activity,which may be the main reason for the different activities of the Ni/ZnO adsorbents prepared with ZnO calcined at different temperatures.展开更多
Zeolites NaY and Ce(IV)Y were employed as adsorbents to remove organic sulfur compounds from model gasoline (MG) solutions with and without toluene in static adsorption experiments at room temperature (RT) and a...Zeolites NaY and Ce(IV)Y were employed as adsorbents to remove organic sulfur compounds from model gasoline (MG) solutions with and without toluene in static adsorption experiments at room temperature (RT) and atmospheric pressure. The adsorbents were characterized by XRD, XRF and pyridine infrared spectrum (IR). The adsorption experiments show that the desulfurization performance of Ce(IV)Y is much better than that of NaY. The sulfur removal over both NaY and Ce(IV)Y decreases with the increase of toluene concentration in MG, however, the decline tendency on Ce(IV)Y is smooth, and it is steep on NaY. FT-IR spectra of thiophene adsorption indicate that thiophene molecules are mainly adsorbed on NaY via π electron interaction, but on Ce(IV)Y, in addition to the π electron interaction, both Ce^4+-S direct interaction and protonation of thiophene also play important roles. Toluene molecules are adsorbed on NaY also via π electron interaction. Although the amount of Bronsted acid sites is increased due to the introduction of Ce^4+ ions into NaY zeolite, it is not found to influence the adsorption mode of toluene over Ce(IV)Y. Compared with NaY zeolite, the improved desulfurization performance over Ce(IV)Y for removing organic sulfur compounds from MG solution, especially those containing large amount of aromatics, may be ascribed to the direct Ce(IV)-S interaction, which is much resistant to the influence resulted from toluene adsorption.展开更多
The computer molecular simulation technique was applied to study the chemisorption of thiophene and tetramethylthiophene as the model sulfides on the simple oxides and complex oxides of some transition metals as the c...The computer molecular simulation technique was applied to study the chemisorption of thiophene and tetramethylthiophene as the model sulfides on the simple oxides and complex oxides of some transition metals as the catalytic materials. The study disclosed that the thiophene sulfides could enter into chemisorption with metal oxides such as VO, ZnO, NiO and Zn-Al-spinel. This interaction could lead to thiophene molecular structure deformation to be in an activated adsorption state, which could help to promote the conversion of thiophene sulfides in the course of catalytic cracking. The VO with a valence of 2 could provide relatively strong selective adsorption sites for the conversion of thiophene sulfides to apparently transform the molecular structures and electron cloud states of such heterocyclic sulfur compounds such as thiophene and tetramethylthiophene into an activated adsorption state. The effect of this interaction was more pronounced with respect to tetramethylthiophene.展开更多
With home-made multi-walled carbon nanotubes (MWCNTs, simplified as CNTs in later text) as support, CNT-supported Co-Mo-S catalysts, denoted as x%(mass percentage)MoiCoj/CNTs, were prepared. Their catalytic perfor...With home-made multi-walled carbon nanotubes (MWCNTs, simplified as CNTs in later text) as support, CNT-supported Co-Mo-S catalysts, denoted as x%(mass percentage)MoiCoj/CNTs, were prepared. Their catalytic performance for thiophene hydrodesulfurization (HDS) and pyrrole hydrodenitrification (HDN) reactions was studied, and compared with the reference system sup- ported by AC. Over the 7.24%Mo3Co1/CNTs catalyst at reaction condition of 1.5 MPa, 613 K, C4H4S/H2=3.7/96.3(molar ratio) and GHSV≈8000 mlswP/(g-cat.h), the specific HDS activity of thiophene reached 3.29 mmolc4H4S/(s.molMo), which was 1.32 times as high as that (2.49 mmolc4H4S/(s.molMo)) of the AC-based counterpart, and was 2.47 times as high as that (1.33 mmolc4H4S/(s-molMo)) of the catalysts supported by AC with the respective optimal MoaCol-loading amount, 16.90%Mo3Co1/AC. Analogous reaction-chemical behaviours were also observed in the case of pyrrole HDN. It was experimentally found that using the CNTs in place of AC as support of the catalyst caused little change in the apparent activation energy for the thiophene HDS or pyrrole HDN reaction, but led to a significant increase in the concentration of catalytically active Mo-species (Mo^4+) at the surface of the functioning catalyst. On the other hand, H2-TPD measurements revealed that the CNT-supported catalyst could reversibly adsorb a greater amount of hydrogen under atmospheric pressure at temperatures ranging from room temperature to about 673 K. This unique feature would help to generate microenvironments with higher stationarystate concentration of active hydrogen-adspecies at the surface of the functioning catalyst. Both factors mentioned above were favorable to increasing the rate of thiophene HDS and pyrrole HDN reactions.展开更多
The adsorption behavior of thiophene and benzene on NiY zeolite has been investigated by the frequency response(FR) method.The FR spectra of thiophene and benzene on NiY zeolite were recorded at 302-335 K in a pressur...The adsorption behavior of thiophene and benzene on NiY zeolite has been investigated by the frequency response(FR) method.The FR spectra of thiophene and benzene on NiY zeolite were recorded at 302-335 K in a pressure range of 26.6-266 Pa.The results showed that adsorption was found to be the rate-controlling process for the thiophene/NiY zeolite system,and there were two different adsorption processes.Two kinds of adsorption models have been proposed,namely:the S-M interaction(low frequency adsorption) and the π-complexation(high frequency adsorption).High frequency adsorption obeyed the Langmuir model.By combining the FR method and Langmuir model,the adsorption site of high frequency adsorption process at 302 K and 335 K was 3.172 mmol/g and 2.974 mmol/g,respectively,and on the combined adsorption isotherms,the adsorption site of the low frequency adsorption process at 302 K and 335 K was 0.308 mmol/gand 0.436 mmol/g,respectively.The low frequency adsorption process(S-M interaction) was the main adsorption process.The diffusion process was the rate-controlling process for the benzene-NiY zeolite system.展开更多
Photocatalytic oxidation kinetics of thiophene in n-octane/water extraction system was studied with fluorine and ferric ion codoped nano-TiO_2(nano-F^-/Fe^(3+)/TiO_2) powders used as the photocatalyst.Effects of initi...Photocatalytic oxidation kinetics of thiophene in n-octane/water extraction system was studied with fluorine and ferric ion codoped nano-TiO_2(nano-F^-/Fe^(3+)/TiO_2) powders used as the photocatalyst.Effects of initial concentration of thiophene and additional dosage of F^-/Fe^(3+)/TiO_2 on the reaction rate constant and half-life were investigated.The results showed that the appropriately added dosage of F^-/Fe^(3+)/TiO_2 was 0.1 g in the 100-mL reaction system and the photooxidative kinetics of thiophene in the presence of F^-/Fe^(3+)/TiO_2 catalyst was of first-order with a rate constant of 0.6508 h^(-1) and a half-life of 1.0651 h.The desulfurization rate of thiophene was 98.1%in 5 h and the sulfur content could be reduced from 800 ppm to 15 ppm.The reaction rate constant increased with a decreasing initial concentration of thiophene.展开更多
The thiophene removal ability of the synthesized ZnNi/diatomite-pseudo-boehmite adsorbent was tested in a lab- scale fixed-bed reaction system. X-ray diffractograms (XRD) were used to characterize the adsorbent samp...The thiophene removal ability of the synthesized ZnNi/diatomite-pseudo-boehmite adsorbent was tested in a lab- scale fixed-bed reaction system. X-ray diffractograms (XRD) were used to characterize the adsorbent samples. The effects of Zn/Ni molar ratio, various model fuels and regeneration patterns on the RADS tests were studied. The adsorption mecha- nism was investigated by XRD and MS analyses. The results indicted that thiophene in the model fuel was first decomposed on the surface Ni of the adsorbent to form Ni3S2 while the hydrocarbon portion of the molecule was released back into the process stream, followed by reduction of Ni3S2 to form H2S in the presence of H2, and then HzS is stored in the adsorbent accompanied by the conversion of ZnO into ZnS.展开更多
The HY,Hβ,HZSM-5,and SAPO-11 zeolites were investigated in the alkylation reaction of thiophene and olefins.As a result,some sulfur-containing impurities could be converted to higher molecular weight components with ...The HY,Hβ,HZSM-5,and SAPO-11 zeolites were investigated in the alkylation reaction of thiophene and olefins.As a result,some sulfur-containing impurities could be converted to higher molecular weight components with their boiling point being in the range of diesel fraction.HZSM-5 had the highest activity and selectivity of desulfurization.At the same time,extensive oligomerization of olefins was not found and coke yield was very low,which could lead to high yield of gasoline products.The main reaction mechanism verifies that the second order alkylation reaction can be carried out on the outer surface and/or pores of the catalyst.The catalytic performance of the HZSM-5 catalyst which is poisoned by 2,4-dimethylquinoline during alkylation to form larger molecules of sulfur compounds is obviously weakened due to the decrease of the acid sites on the outer surface and at the mouth of pores.展开更多
Lewis acid–base passivation is a significant technique to achieve structural stability of perovskite solar cells(PSCs) by overcoming the issues of wide grain boundaries, crystal defects, and the instability of PSCs. ...Lewis acid–base passivation is a significant technique to achieve structural stability of perovskite solar cells(PSCs) by overcoming the issues of wide grain boundaries, crystal defects, and the instability of PSCs. In this work, the combined effects of thiophene with phthalocyanine(Pc) as isomers(S2 and S3)on the photovoltaic performance of PSCs were studied for the first time. Through density functional theory calculations, we confirmed that the position of the S atom in the structure affects Lewis acid–base interactions with under-coordinated Pb^(2+) sites. The morphology of methylammonium lead iodide(MAPbI_(3)) for passivated devices was improved and thin dense layers with compact surface and large grain size were observed, leading to improvement of the charge extraction ability and reduction of non-radiative recombination and the trap density. A highest power conversion efficiency of 18% was achieved for the Pc S3 passivated device, which was 6.69% more than that of the controlled device.Furthermore, the Pcs passivated devices demonstrated remarkable stability under high-moisture and high-temperature conditions.展开更多
The reaction mechanism of thiophene on vanadium oxides under FCC operating conditions hadbeen preliminary studied using in-situ FT-IR analysis of thiophene and atmospheric pressure continuousfixed-bed reaction, follow...The reaction mechanism of thiophene on vanadium oxides under FCC operating conditions hadbeen preliminary studied using in-situ FT-IR analysis of thiophene and atmospheric pressure continuousfixed-bed reaction, followed by characterization via pyridine adsorption-temperature programmed desorptionmethod, and FT-IR and XPS spectra. The research had discovered that, under 500℃ thiophene could undergothe redox reaction with V2O5, while being converted into CO, CO2 as well as SO2 with its conversion ratereaching 41.2%. At the same time the oxidation number of vanadium decreased. The existence of a few Brnstedacid centers on V2O5 could lead to an increase of H2S yield among the products derived from the reaction withthiophene.展开更多
The performance of polymer field-effect transistors is improved by thermal crosslinking of poly(3-hexylthiophene),using ditert butyl peroxide as the crosslinker.The device performance depends on the crosslinker concen...The performance of polymer field-effect transistors is improved by thermal crosslinking of poly(3-hexylthiophene),using ditert butyl peroxide as the crosslinker.The device performance depends on the crosslinker concentration significantly.We obtain an optimal on/off ratio of 105 and the saturate field-effect mobility of 0.34 cm2V−1s−1,by using a suitable ratios of ditert butyl peroxide,0.5 wt%of poly(3-hexylthiophene).The microstructure images show that the crosslinked poly(3-hexylthiophene)active layers simultaneously possess appropriate crystallinity and smooth morphology.Moreover,crosslinking of poly(3-hexylthiophene)prevents the transistors from large threshold voltage shifts under ambient bias-stressing,showing an advantage in encouraging device environmental and operating stability.展开更多
The thiophene removal ability of the synthesized NiZnO-based adsorbent was tested in a lab-scale fixed-bed system. The X-ray diffractometer (XRD) and the temperature-programmed reduction (H2-TPR) instrument were used ...The thiophene removal ability of the synthesized NiZnO-based adsorbent was tested in a lab-scale fixed-bed system. The X-ray diffractometer (XRD) and the temperature-programmed reduction (H2-TPR) instrument were used to characterize the samples. The XRD and TPR results showed that there existed stronger synergetic effect between ZnO and NiO to form well-dispersed adsorbent particles when the Zn/Ni molar ratio in adsorbent was 0.4, and that the optimum temperature for reduction of the NiZnO-based adsorbent was approximately in the range of 350℃—400℃. In addition, the effects of reaction temperature, and reaction pressure on the reactive adsorption desulfurization tests were studied.展开更多
The films of two x-shape oligo(thiophene)s, 3, 4-dibithienyl-2, 5-dithienylthiophene (7T) and 2, 5-dibithienyl-3, 4- ditrithienylthiophene (11T), which are prepared by vacuum evaporation, have been investigated ...The films of two x-shape oligo(thiophene)s, 3, 4-dibithienyl-2, 5-dithienylthiophene (7T) and 2, 5-dibithienyl-3, 4- ditrithienylthiophene (11T), which are prepared by vacuum evaporation, have been investigated as novel electron donor layers in two-layer photovoltaic cells. UV-Vis absorptions show red-shifted and broadened absorptions of the vacuumevaporated films as compared with those of the corresponding solutions and spin-coating films, which is beneficial for photovoltaic properties. X-ray diffraction (XRD) and differential scanning calorimetry (DSC) measurements show that the vacuum-evaporated films are almost amorphous. Two-layer photovoltaic cells have been realized by the thermal evaporation of 7T and llT as donors and N, N′-bis(1-ethylpropyl)-3, 4:9,10-perylene bis(tetracarboxyl diimide) (EP- PTC) as an acceptor. An energy conversion efficiency (ECE) of 0.18% of the cell based on 7T with an irradiation of white light at 100 mw/cm^2 has been demonstrated by the measurements of current (I)- voltage (V) curves of the cells to be higher than the ECE of the reference system based on donor dihexylterthienyl (H3T) that is linear and without α, β linkage.展开更多
The density functional theory and the cluster model methods have been employed to investigate the interactions between thiophene and the HZSM-5 zeolites. The molecular complexes formed by the adsorption of thiophene o...The density functional theory and the cluster model methods have been employed to investigate the interactions between thiophene and the HZSM-5 zeolites. The molecular complexes formed by the adsorption of thiophene on silanol H3SiOH with two coordination forms, and the model Brrnsted acid sites of zeolite cluster H3Si(OH)AI(OH)2SiH3 upon the interaction with thiophene have been comparatively studied. Full optimization and frequency analysis of all cluster models have been carried out using the B3LYP hybrid method at 6-31G basis level for hydrogen atoms and 6-31+G(d) basis set level for silicon, aluminum, oxygen, carbon, and sulfur atoms. The calculated results showed that the nature of interactions leading to the formation of the zeolite cluster-thiophene and silanol-thiophene complexes was associated with the van der Waals force confirmed by a slight change of geometric structures and properties. Thiophene is adsorbed on bridging hydroxyl group prior to silanol OH group judging from the magnitude of adsorption heat. The cluster model calculation reproducing the experimental prediction to form the experimental adsorption spectra of thiophene in HZSM-5 zeolite has illustrated the validity of the proposed adsorption models.展开更多
The mass transfer of thiophene through pervaporation(PV) membranes could be facilitated by certain transitional metal ions like Ag+, Mn2+, and Cr3+ thanks to their p complexation with thiophene. In this study, Ag+, ...The mass transfer of thiophene through pervaporation(PV) membranes could be facilitated by certain transitional metal ions like Ag+, Mn2+, and Cr3+ thanks to their p complexation with thiophene. In this study, Ag+, Mn2+, and Cr3+ ions were loaded onto the polyether block amide(PEBAX)/PAN composite membranes and were tested on the performance for separation of thiophene/n-heptane mixture. Pervaporation test results showed that the pervaporative separation index increased significantly to 73.1%, 75.5%, and 97.2% at 30 oC for the Ag+-, Mn2+-, Cr3+-loaded PEBAX membranes, respectively,as compared to the pristine PEBAX/PAN composite membrane.展开更多
To better understand the nature of carbon nanotubes supported Co-Mo catalysts (Co-Mo/CNTs) for selective hydrodesulfurization (HDS) of fluid catalytic cracking (FCC) gasoline, studies are carried out using in si...To better understand the nature of carbon nanotubes supported Co-Mo catalysts (Co-Mo/CNTs) for selective hydrodesulfurization (HDS) of fluid catalytic cracking (FCC) gasoline, studies are carried out using in situ Fourier transform infrared spectroscopy (FT-IR). The catalytic performances of Co-Mo/CNTs catalysts were evaluated with a mixture of cyclohexane, diisobutylene, cyclohexene, 1-octene (60 : 30 : 5 : 5, volume ratio) and thiophene (0.5%, ratio of total weight) as model compounds to simulate FCC gasoline. The HDS experimental results suggested that the HDS activity and selectivity of Co-Mo/CNTs catalysts were affected by Co/Mo ratio; the optimal Co/Mo atomic ratio is about 0.4, and the optimum reaction temperature is 260 ℃. The in situ FT-IR studies revealed that 1-octene can be completely saturated at 200 ℃. In the FT-IR spectra of diisobutylene, the characteristic absorption peak around 3081 cm^-1 for the stretching vibration peak of =C-H bond was still clear at 320 ℃ indicating that diisobutylene is difficult to be hydrogenated. As for the thiophene, no characteristic absorption peak could be found around 3092 cm^-1 and 835 cm^-1 when the reaction temperature was raised to 280 ℃, indicating that thiophene had been completely hydrodesulfurized. On the basis of FT-IR results, it can be deduced that thiophene HDS reaction occurred mainly through direct hydrogenolysis route, whereas thiophene HDS and diisobutylene hydrogenation reaction over Co-Mo/CNTs catalysts might occur on two different kinds of active sites.展开更多
This work reports an improved method for the wet desulfurization of high-sulfur petroleum coke(petcoke)powder based on the combination of pre-calcination,H_(2)O_(2),and ultrasound.The results demonstrated that over 45...This work reports an improved method for the wet desulfurization of high-sulfur petroleum coke(petcoke)powder based on the combination of pre-calcination,H_(2)O_(2),and ultrasound.The results demonstrated that over 45%of the sulfur atoms were efficiently removed from Tianjin coke and Qilu coke(particle size<0.1 mm)by pre-calcination at 800℃ for 6 h followed by desulfurization with HNO3(8 mol/L)and H_(2)O_(2)(2 mol/L)solution at a reaction temperature of 60℃,a reaction time of 6 h,a liquid-to-solid ratio of 10 mL/g,and a 40 kHz ultrasonic power of 400 W.In addition,the specific surface area of the petcoke particles increased from 0.7 to 301.49 m^(2)/g.After desulfurization,the pore size distribution of the petcoke particles was more concentrated on micropores compared with the samples prior to petcoke treatment.Reactive force field molecular dynamics simulation results indicated that HNO_(3) continuously oxidized the carbon atoms adjacent to sulfur atoms in the petcoke macromolecules and promoted sulfur removal from petcoke via the cleavage of C-S bonds.The sulfur transformation mechanism can be summarized as follows:thiophene sulfur→branched chain carbon sulfur→CO_(2)S→C_(2)O_(2)S→C_(2)O_(3)NS→C_(2)O_(4)S→CO_(2)S.展开更多
This work presented the synthesis of Ni-based metal-organic framework material with a paddle-wheel structure Ni3(BTC)2 (Ni-BTC) and its application in thiophene (TP) adsorption from gasoline distillate by batch method...This work presented the synthesis of Ni-based metal-organic framework material with a paddle-wheel structure Ni3(BTC)2 (Ni-BTC) and its application in thiophene (TP) adsorption from gasoline distillate by batch method. Adsorption isotherms of TP, cyclohexene, and toluene in cyclohexane onto Ni-BTC were conducted at 298-308 K to interpret the different effect of cyclohexene and toluene on TP adsorption. The results showed that, compared w让h cyclohexene, toluene addition in model gasoline led to a more evident decline in sulfur capacity of Ni-BTC, which is opposite to isostructural HKUST-1. The adsorption isotherms of TP, cyclohexene and toluene fit Langmuir model, S-type model and Temkin model well, respectively, indicating that the adsorption mechanisms of TP and the two competitors are different from one another The adsorption capacities on Ni-BTC followed the order of cyclohexene < toluene < TP at the same equilibrium concentrations, implying the order of the adsorption affinities, which is in good agreement with the different extent of influence by the two competitors. The enthalpy of TP adsorption on Ni-BTC was estimated to be -80.01 kj/mol, almost twice that on HKUST-1. The poor reusability of Ni-BTC in batch experiment, which is owing to its sensitivity to the air, can be prevented from regenerating used Ni-BTC in fixed-bed reactor by N2 flow. The difference between Ni-BTC and HKUST-1 in maximum adsorption capacity (q0),△H of TP adsorption, and stability demonstrates that the central metal in isostructural MOFs plays a key role in adjusting the desulfurization performance, which may open up a potential avenue for the development of MOF-based adsorbents with superior desulfurization performance.展开更多
A type of visible light photocatalyst Bi2WO6 was prepared from Bi(NO3)3.5H2O and Na2WO4.2H2O by means of hydrothermal method and was characterized by UV-vis diffuse reflectance spectrometry and XRD.Oxidative desulfuri...A type of visible light photocatalyst Bi2WO6 was prepared from Bi(NO3)3.5H2O and Na2WO4.2H2O by means of hydrothermal method and was characterized by UV-vis diffuse reflectance spectrometry and XRD.Oxidative desulfurization via photocatalysis was investigated using thiophene dissolved in octane as the model compound,with hydrogen peroxide used as the oxidant.The effects of hydrogen peroxide mass fraction,irradiation time,dosage of photocatalyst Bi2WO6 on the desulfurization efficiency were also investigated.Under suitable conditions,the desulfurization rate of model compound reached over 70%.展开更多
基金supported by National Key Fundamental Research development Plan ("973" Plan, No. 2010CB226905)the Postgraduate Innovation Fund of China University of petroleumthe Postgraduate Innovation Fund of China University of petroleum
文摘To better understand the nature of reactive adsorption of thiophene on Ni/ZnO adsorbent,the effect of ZnO textural structure on the desulfurization activity was investigated.ZnO materials were synthesized by low-temperature solid-state reaction and the corresponding Ni/ZnO adsorbents were prepared by incipient impregnation method.The analysis results showed that the crystalline sizes of ZnO as-synthesized as well as the BET surface areas varied obviously with the calcination temperature.The activity evaluations indicated that the Ni/ZnO adsorbents prepared with ZnO possessed a favorable textural structure as active component exhibited good activity of removing thiophene.The evolutions of the main crystalline phases of Ni/ZnO adsorbents before and after reaction confirmed that ZnO played a crucial role in taking up S element and converting it into ZnS in the reactive adsorption process.It was concluded that ZnO with larger surface area and smaller crystal particles resulted in better desulfurization activity,which may be the main reason for the different activities of the Ni/ZnO adsorbents prepared with ZnO calcined at different temperatures.
基金supported by the Fundamental Research Funds for the Key Universities (Grant No. DUT10LK25)the National Natural Science Foundation of China (Grant No. 21106014)
文摘Zeolites NaY and Ce(IV)Y were employed as adsorbents to remove organic sulfur compounds from model gasoline (MG) solutions with and without toluene in static adsorption experiments at room temperature (RT) and atmospheric pressure. The adsorbents were characterized by XRD, XRF and pyridine infrared spectrum (IR). The adsorption experiments show that the desulfurization performance of Ce(IV)Y is much better than that of NaY. The sulfur removal over both NaY and Ce(IV)Y decreases with the increase of toluene concentration in MG, however, the decline tendency on Ce(IV)Y is smooth, and it is steep on NaY. FT-IR spectra of thiophene adsorption indicate that thiophene molecules are mainly adsorbed on NaY via π electron interaction, but on Ce(IV)Y, in addition to the π electron interaction, both Ce^4+-S direct interaction and protonation of thiophene also play important roles. Toluene molecules are adsorbed on NaY also via π electron interaction. Although the amount of Bronsted acid sites is increased due to the introduction of Ce^4+ ions into NaY zeolite, it is not found to influence the adsorption mode of toluene over Ce(IV)Y. Compared with NaY zeolite, the improved desulfurization performance over Ce(IV)Y for removing organic sulfur compounds from MG solution, especially those containing large amount of aromatics, may be ascribed to the direct Ce(IV)-S interaction, which is much resistant to the influence resulted from toluene adsorption.
文摘The computer molecular simulation technique was applied to study the chemisorption of thiophene and tetramethylthiophene as the model sulfides on the simple oxides and complex oxides of some transition metals as the catalytic materials. The study disclosed that the thiophene sulfides could enter into chemisorption with metal oxides such as VO, ZnO, NiO and Zn-Al-spinel. This interaction could lead to thiophene molecular structure deformation to be in an activated adsorption state, which could help to promote the conversion of thiophene sulfides in the course of catalytic cracking. The VO with a valence of 2 could provide relatively strong selective adsorption sites for the conversion of thiophene sulfides to apparently transform the molecular structures and electron cloud states of such heterocyclic sulfur compounds such as thiophene and tetramethylthiophene into an activated adsorption state. The effect of this interaction was more pronounced with respect to tetramethylthiophene.
基金Supported by National Natural Science Foundation of China (No. 20473063 and No. 20590364).
文摘With home-made multi-walled carbon nanotubes (MWCNTs, simplified as CNTs in later text) as support, CNT-supported Co-Mo-S catalysts, denoted as x%(mass percentage)MoiCoj/CNTs, were prepared. Their catalytic performance for thiophene hydrodesulfurization (HDS) and pyrrole hydrodenitrification (HDN) reactions was studied, and compared with the reference system sup- ported by AC. Over the 7.24%Mo3Co1/CNTs catalyst at reaction condition of 1.5 MPa, 613 K, C4H4S/H2=3.7/96.3(molar ratio) and GHSV≈8000 mlswP/(g-cat.h), the specific HDS activity of thiophene reached 3.29 mmolc4H4S/(s.molMo), which was 1.32 times as high as that (2.49 mmolc4H4S/(s.molMo)) of the AC-based counterpart, and was 2.47 times as high as that (1.33 mmolc4H4S/(s-molMo)) of the catalysts supported by AC with the respective optimal MoaCol-loading amount, 16.90%Mo3Co1/AC. Analogous reaction-chemical behaviours were also observed in the case of pyrrole HDN. It was experimentally found that using the CNTs in place of AC as support of the catalyst caused little change in the apparent activation energy for the thiophene HDS or pyrrole HDN reaction, but led to a significant increase in the concentration of catalytically active Mo-species (Mo^4+) at the surface of the functioning catalyst. On the other hand, H2-TPD measurements revealed that the CNT-supported catalyst could reversibly adsorb a greater amount of hydrogen under atmospheric pressure at temperatures ranging from room temperature to about 673 K. This unique feature would help to generate microenvironments with higher stationarystate concentration of active hydrogen-adspecies at the surface of the functioning catalyst. Both factors mentioned above were favorable to increasing the rate of thiophene HDS and pyrrole HDN reactions.
基金the National Natural Science Foundation of China(NSFC.Contract No.20546003 and No.20776064)
文摘The adsorption behavior of thiophene and benzene on NiY zeolite has been investigated by the frequency response(FR) method.The FR spectra of thiophene and benzene on NiY zeolite were recorded at 302-335 K in a pressure range of 26.6-266 Pa.The results showed that adsorption was found to be the rate-controlling process for the thiophene/NiY zeolite system,and there were two different adsorption processes.Two kinds of adsorption models have been proposed,namely:the S-M interaction(low frequency adsorption) and the π-complexation(high frequency adsorption).High frequency adsorption obeyed the Langmuir model.By combining the FR method and Langmuir model,the adsorption site of high frequency adsorption process at 302 K and 335 K was 3.172 mmol/g and 2.974 mmol/g,respectively,and on the combined adsorption isotherms,the adsorption site of the low frequency adsorption process at 302 K and 335 K was 0.308 mmol/gand 0.436 mmol/g,respectively.The low frequency adsorption process(S-M interaction) was the main adsorption process.The diffusion process was the rate-controlling process for the benzene-NiY zeolite system.
文摘Photocatalytic oxidation kinetics of thiophene in n-octane/water extraction system was studied with fluorine and ferric ion codoped nano-TiO_2(nano-F^-/Fe^(3+)/TiO_2) powders used as the photocatalyst.Effects of initial concentration of thiophene and additional dosage of F^-/Fe^(3+)/TiO_2 on the reaction rate constant and half-life were investigated.The results showed that the appropriately added dosage of F^-/Fe^(3+)/TiO_2 was 0.1 g in the 100-mL reaction system and the photooxidative kinetics of thiophene in the presence of F^-/Fe^(3+)/TiO_2 catalyst was of first-order with a rate constant of 0.6508 h^(-1) and a half-life of 1.0651 h.The desulfurization rate of thiophene was 98.1%in 5 h and the sulfur content could be reduced from 800 ppm to 15 ppm.The reaction rate constant increased with a decreasing initial concentration of thiophene.
文摘The thiophene removal ability of the synthesized ZnNi/diatomite-pseudo-boehmite adsorbent was tested in a lab- scale fixed-bed reaction system. X-ray diffractograms (XRD) were used to characterize the adsorbent samples. The effects of Zn/Ni molar ratio, various model fuels and regeneration patterns on the RADS tests were studied. The adsorption mecha- nism was investigated by XRD and MS analyses. The results indicted that thiophene in the model fuel was first decomposed on the surface Ni of the adsorbent to form Ni3S2 while the hydrocarbon portion of the molecule was released back into the process stream, followed by reduction of Ni3S2 to form H2S in the presence of H2, and then HzS is stored in the adsorbent accompanied by the conversion of ZnO into ZnS.
文摘The HY,Hβ,HZSM-5,and SAPO-11 zeolites were investigated in the alkylation reaction of thiophene and olefins.As a result,some sulfur-containing impurities could be converted to higher molecular weight components with their boiling point being in the range of diesel fraction.HZSM-5 had the highest activity and selectivity of desulfurization.At the same time,extensive oligomerization of olefins was not found and coke yield was very low,which could lead to high yield of gasoline products.The main reaction mechanism verifies that the second order alkylation reaction can be carried out on the outer surface and/or pores of the catalyst.The catalytic performance of the HZSM-5 catalyst which is poisoned by 2,4-dimethylquinoline during alkylation to form larger molecules of sulfur compounds is obviously weakened due to the decrease of the acid sites on the outer surface and at the mouth of pores.
基金supported by the National Natural Science Foundation of China(21975116)the Guangdong-Hong Kong-Macao Joint Laboratory(2019B121205001)the Major Program of Guangdong Basic and Applied Research(2019B030302009)。
文摘Lewis acid–base passivation is a significant technique to achieve structural stability of perovskite solar cells(PSCs) by overcoming the issues of wide grain boundaries, crystal defects, and the instability of PSCs. In this work, the combined effects of thiophene with phthalocyanine(Pc) as isomers(S2 and S3)on the photovoltaic performance of PSCs were studied for the first time. Through density functional theory calculations, we confirmed that the position of the S atom in the structure affects Lewis acid–base interactions with under-coordinated Pb^(2+) sites. The morphology of methylammonium lead iodide(MAPbI_(3)) for passivated devices was improved and thin dense layers with compact surface and large grain size were observed, leading to improvement of the charge extraction ability and reduction of non-radiative recombination and the trap density. A highest power conversion efficiency of 18% was achieved for the Pc S3 passivated device, which was 6.69% more than that of the controlled device.Furthermore, the Pcs passivated devices demonstrated remarkable stability under high-moisture and high-temperature conditions.
文摘The reaction mechanism of thiophene on vanadium oxides under FCC operating conditions hadbeen preliminary studied using in-situ FT-IR analysis of thiophene and atmospheric pressure continuousfixed-bed reaction, followed by characterization via pyridine adsorption-temperature programmed desorptionmethod, and FT-IR and XPS spectra. The research had discovered that, under 500℃ thiophene could undergothe redox reaction with V2O5, while being converted into CO, CO2 as well as SO2 with its conversion ratereaching 41.2%. At the same time the oxidation number of vanadium decreased. The existence of a few Brnstedacid centers on V2O5 could lead to an increase of H2S yield among the products derived from the reaction withthiophene.
基金by the National Natural Science Foundation of China under Grant Nos 60676051,60876046,60976048 and 61076065,Tianjin Natural Science Foundation(06TXTJJC14603,07JCYBJC12700)Key Project of the Ministry of Education of China(209007)+2 种基金Tianjin Natural Science Council(10ZCKFGX01900)Scientific Developing Foundation of Tianjin Education Commission(20100723)the Tianjin Key Discipline of Material Physics and Chemistry.
文摘The performance of polymer field-effect transistors is improved by thermal crosslinking of poly(3-hexylthiophene),using ditert butyl peroxide as the crosslinker.The device performance depends on the crosslinker concentration significantly.We obtain an optimal on/off ratio of 105 and the saturate field-effect mobility of 0.34 cm2V−1s−1,by using a suitable ratios of ditert butyl peroxide,0.5 wt%of poly(3-hexylthiophene).The microstructure images show that the crosslinked poly(3-hexylthiophene)active layers simultaneously possess appropriate crystallinity and smooth morphology.Moreover,crosslinking of poly(3-hexylthiophene)prevents the transistors from large threshold voltage shifts under ambient bias-stressing,showing an advantage in encouraging device environmental and operating stability.
文摘The thiophene removal ability of the synthesized NiZnO-based adsorbent was tested in a lab-scale fixed-bed system. The X-ray diffractometer (XRD) and the temperature-programmed reduction (H2-TPR) instrument were used to characterize the samples. The XRD and TPR results showed that there existed stronger synergetic effect between ZnO and NiO to form well-dispersed adsorbent particles when the Zn/Ni molar ratio in adsorbent was 0.4, and that the optimum temperature for reduction of the NiZnO-based adsorbent was approximately in the range of 350℃—400℃. In addition, the effects of reaction temperature, and reaction pressure on the reactive adsorption desulfurization tests were studied.
基金Project supported by the State Key Development Program for Basic Research of China (Grant No 2002CB613401)the National Natural Science Foundation of China (Grant Nos 20474023 and 50673035)+2 种基金the Cooperation Research Project of National Natural Science Foundation of China and Korea Science and Engineering Foundation (Grant No 20611140613)the Research Project of Jilin Province (Grant Nos 20050504 and 20060702)the Research Project of Changchun City (Grant No 06GH03)
文摘The films of two x-shape oligo(thiophene)s, 3, 4-dibithienyl-2, 5-dithienylthiophene (7T) and 2, 5-dibithienyl-3, 4- ditrithienylthiophene (11T), which are prepared by vacuum evaporation, have been investigated as novel electron donor layers in two-layer photovoltaic cells. UV-Vis absorptions show red-shifted and broadened absorptions of the vacuumevaporated films as compared with those of the corresponding solutions and spin-coating films, which is beneficial for photovoltaic properties. X-ray diffraction (XRD) and differential scanning calorimetry (DSC) measurements show that the vacuum-evaporated films are almost amorphous. Two-layer photovoltaic cells have been realized by the thermal evaporation of 7T and llT as donors and N, N′-bis(1-ethylpropyl)-3, 4:9,10-perylene bis(tetracarboxyl diimide) (EP- PTC) as an acceptor. An energy conversion efficiency (ECE) of 0.18% of the cell based on 7T with an irradiation of white light at 100 mw/cm^2 has been demonstrated by the measurements of current (I)- voltage (V) curves of the cells to be higher than the ECE of the reference system based on donor dihexylterthienyl (H3T) that is linear and without α, β linkage.
文摘The density functional theory and the cluster model methods have been employed to investigate the interactions between thiophene and the HZSM-5 zeolites. The molecular complexes formed by the adsorption of thiophene on silanol H3SiOH with two coordination forms, and the model Brrnsted acid sites of zeolite cluster H3Si(OH)AI(OH)2SiH3 upon the interaction with thiophene have been comparatively studied. Full optimization and frequency analysis of all cluster models have been carried out using the B3LYP hybrid method at 6-31G basis level for hydrogen atoms and 6-31+G(d) basis set level for silicon, aluminum, oxygen, carbon, and sulfur atoms. The calculated results showed that the nature of interactions leading to the formation of the zeolite cluster-thiophene and silanol-thiophene complexes was associated with the van der Waals force confirmed by a slight change of geometric structures and properties. Thiophene is adsorbed on bridging hydroxyl group prior to silanol OH group judging from the magnitude of adsorption heat. The cluster model calculation reproducing the experimental prediction to form the experimental adsorption spectra of thiophene in HZSM-5 zeolite has illustrated the validity of the proposed adsorption models.
基金The financial support from the Dean Project of Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology (2013Z009)the Guangxi Natural Science Fund (2014jjAA20079)the Guangdong Province of Quality and Technical Supervision Bureau (2018ZZ01) is greatly appreciated
文摘The mass transfer of thiophene through pervaporation(PV) membranes could be facilitated by certain transitional metal ions like Ag+, Mn2+, and Cr3+ thanks to their p complexation with thiophene. In this study, Ag+, Mn2+, and Cr3+ ions were loaded onto the polyether block amide(PEBAX)/PAN composite membranes and were tested on the performance for separation of thiophene/n-heptane mixture. Pervaporation test results showed that the pervaporative separation index increased significantly to 73.1%, 75.5%, and 97.2% at 30 oC for the Ag+-, Mn2+-, Cr3+-loaded PEBAX membranes, respectively,as compared to the pristine PEBAX/PAN composite membrane.
基金National Basic Research Program of China ("973"Program,No.2004CB217807)
文摘To better understand the nature of carbon nanotubes supported Co-Mo catalysts (Co-Mo/CNTs) for selective hydrodesulfurization (HDS) of fluid catalytic cracking (FCC) gasoline, studies are carried out using in situ Fourier transform infrared spectroscopy (FT-IR). The catalytic performances of Co-Mo/CNTs catalysts were evaluated with a mixture of cyclohexane, diisobutylene, cyclohexene, 1-octene (60 : 30 : 5 : 5, volume ratio) and thiophene (0.5%, ratio of total weight) as model compounds to simulate FCC gasoline. The HDS experimental results suggested that the HDS activity and selectivity of Co-Mo/CNTs catalysts were affected by Co/Mo ratio; the optimal Co/Mo atomic ratio is about 0.4, and the optimum reaction temperature is 260 ℃. The in situ FT-IR studies revealed that 1-octene can be completely saturated at 200 ℃. In the FT-IR spectra of diisobutylene, the characteristic absorption peak around 3081 cm^-1 for the stretching vibration peak of =C-H bond was still clear at 320 ℃ indicating that diisobutylene is difficult to be hydrogenated. As for the thiophene, no characteristic absorption peak could be found around 3092 cm^-1 and 835 cm^-1 when the reaction temperature was raised to 280 ℃, indicating that thiophene had been completely hydrodesulfurized. On the basis of FT-IR results, it can be deduced that thiophene HDS reaction occurred mainly through direct hydrogenolysis route, whereas thiophene HDS and diisobutylene hydrogenation reaction over Co-Mo/CNTs catalysts might occur on two different kinds of active sites.
基金This work was financially supported by the Scientific Research Project of Hunan Education Department(20C0410)the Fundamental Research Funds for the Central Universities of Central South University.
文摘This work reports an improved method for the wet desulfurization of high-sulfur petroleum coke(petcoke)powder based on the combination of pre-calcination,H_(2)O_(2),and ultrasound.The results demonstrated that over 45%of the sulfur atoms were efficiently removed from Tianjin coke and Qilu coke(particle size<0.1 mm)by pre-calcination at 800℃ for 6 h followed by desulfurization with HNO3(8 mol/L)and H_(2)O_(2)(2 mol/L)solution at a reaction temperature of 60℃,a reaction time of 6 h,a liquid-to-solid ratio of 10 mL/g,and a 40 kHz ultrasonic power of 400 W.In addition,the specific surface area of the petcoke particles increased from 0.7 to 301.49 m^(2)/g.After desulfurization,the pore size distribution of the petcoke particles was more concentrated on micropores compared with the samples prior to petcoke treatment.Reactive force field molecular dynamics simulation results indicated that HNO_(3) continuously oxidized the carbon atoms adjacent to sulfur atoms in the petcoke macromolecules and promoted sulfur removal from petcoke via the cleavage of C-S bonds.The sulfur transformation mechanism can be summarized as follows:thiophene sulfur→branched chain carbon sulfur→CO_(2)S→C_(2)O_(2)S→C_(2)O_(3)NS→C_(2)O_(4)S→CO_(2)S.
基金financial supports from the Natural Science Foundation of China-Liaoning United Funds(grant no.U1508205)the Fundamental Research Funds for the Central Universities(grant no.DUT15ZD113)the Key Laboratory of Applied Surface and Colloid Chemistry(Shanxi Normal University)
文摘This work presented the synthesis of Ni-based metal-organic framework material with a paddle-wheel structure Ni3(BTC)2 (Ni-BTC) and its application in thiophene (TP) adsorption from gasoline distillate by batch method. Adsorption isotherms of TP, cyclohexene, and toluene in cyclohexane onto Ni-BTC were conducted at 298-308 K to interpret the different effect of cyclohexene and toluene on TP adsorption. The results showed that, compared w让h cyclohexene, toluene addition in model gasoline led to a more evident decline in sulfur capacity of Ni-BTC, which is opposite to isostructural HKUST-1. The adsorption isotherms of TP, cyclohexene and toluene fit Langmuir model, S-type model and Temkin model well, respectively, indicating that the adsorption mechanisms of TP and the two competitors are different from one another The adsorption capacities on Ni-BTC followed the order of cyclohexene < toluene < TP at the same equilibrium concentrations, implying the order of the adsorption affinities, which is in good agreement with the different extent of influence by the two competitors. The enthalpy of TP adsorption on Ni-BTC was estimated to be -80.01 kj/mol, almost twice that on HKUST-1. The poor reusability of Ni-BTC in batch experiment, which is owing to its sensitivity to the air, can be prevented from regenerating used Ni-BTC in fixed-bed reactor by N2 flow. The difference between Ni-BTC and HKUST-1 in maximum adsorption capacity (q0),△H of TP adsorption, and stability demonstrates that the central metal in isostructural MOFs plays a key role in adjusting the desulfurization performance, which may open up a potential avenue for the development of MOF-based adsorbents with superior desulfurization performance.
基金support provided by the Shaanxi Provincial Education Project (09JK816)
文摘A type of visible light photocatalyst Bi2WO6 was prepared from Bi(NO3)3.5H2O and Na2WO4.2H2O by means of hydrothermal method and was characterized by UV-vis diffuse reflectance spectrometry and XRD.Oxidative desulfurization via photocatalysis was investigated using thiophene dissolved in octane as the model compound,with hydrogen peroxide used as the oxidant.The effects of hydrogen peroxide mass fraction,irradiation time,dosage of photocatalyst Bi2WO6 on the desulfurization efficiency were also investigated.Under suitable conditions,the desulfurization rate of model compound reached over 70%.