Let p be a prime number and f_2(G) be the number of factorizations G = AB of the group G, where A, B are subgroups of G. Let G be a class of finite p-groups as follows,G = a, b | a^(p^n)= b^(p^m)= 1, a^b= a^(p^(n-1)+1...Let p be a prime number and f_2(G) be the number of factorizations G = AB of the group G, where A, B are subgroups of G. Let G be a class of finite p-groups as follows,G = a, b | a^(p^n)= b^(p^m)= 1, a^b= a^(p^(n-1)+1), where n > m ≥ 1. In this article, the factorization number f_2(G) of G is computed, improving the results of Saeedi and Farrokhi in [5].展开更多
Let G be a group and A and B be subgroups of G.If G=AB,then G is said to be factorized by A and B.Let p be a prime number.The factorization numbers of a 2-generators abelian p-group and a modular p-group have been det...Let G be a group and A and B be subgroups of G.If G=AB,then G is said to be factorized by A and B.Let p be a prime number.The factorization numbers of a 2-generators abelian p-group and a modular p-group have been determined.Further,suppose that G is a finite p-group as follows G=<a,b|a^(p)^(n)=b^(p)^(m)=1,a^(b)=a^(p^(n-1)+1)>,where n≥2,m≥1.In this paper,the factorization number of G is computed completely,which is a generalization of the result of Saeedi and Farrokhi.展开更多
基金Supported by National Natural Science Foundation of China(11601121)Henan Provincial Natural Science Foundation of China(162300410066)
文摘Let p be a prime number and f_2(G) be the number of factorizations G = AB of the group G, where A, B are subgroups of G. Let G be a class of finite p-groups as follows,G = a, b | a^(p^n)= b^(p^m)= 1, a^b= a^(p^(n-1)+1), where n > m ≥ 1. In this article, the factorization number f_2(G) of G is computed, improving the results of Saeedi and Farrokhi in [5].
基金Supported by National Natural Science Foundation of China(Grant No.11601121,12171142).
文摘Let G be a group and A and B be subgroups of G.If G=AB,then G is said to be factorized by A and B.Let p be a prime number.The factorization numbers of a 2-generators abelian p-group and a modular p-group have been determined.Further,suppose that G is a finite p-group as follows G=<a,b|a^(p)^(n)=b^(p)^(m)=1,a^(b)=a^(p^(n-1)+1)>,where n≥2,m≥1.In this paper,the factorization number of G is computed completely,which is a generalization of the result of Saeedi and Farrokhi.