期刊文献+

Survey of Machine Learning Algorithms for Disease Diagnostic 被引量:15

Survey of Machine Learning Algorithms for Disease Diagnostic
在线阅读 下载PDF
导出
摘要 In medical imaging, Computer Aided Diagnosis (CAD) is a rapidly growing dynamic area of research. In recent years, significant attempts are made for the enhancement of computer aided diagnosis applications because errors in medical diagnostic systems can result in seriously misleading medical treatments. Machine learning is important in Computer Aided Diagnosis. After using an easy equation, objects such as organs may not be indicated accurately. So, pattern recognition fundamentally involves learning from examples. In the field of bio-medical, pattern recognition and machine learning promise the improved accuracy of perception and diagnosis of disease. They also promote the objectivity of decision-making process. For the analysis of high-dimensional and multimodal bio-medical data, machine learning offers a worthy approach for making classy and automatic algorithms. This survey paper provides the comparative analysis of different machine learning algorithms for diagnosis of different diseases such as heart disease, diabetes disease, liver disease, dengue disease and hepatitis disease. It brings attention towards the suite of machine learning algorithms and tools that are used for the analysis of diseases and decision-making process accordingly. In medical imaging, Computer Aided Diagnosis (CAD) is a rapidly growing dynamic area of research. In recent years, significant attempts are made for the enhancement of computer aided diagnosis applications because errors in medical diagnostic systems can result in seriously misleading medical treatments. Machine learning is important in Computer Aided Diagnosis. After using an easy equation, objects such as organs may not be indicated accurately. So, pattern recognition fundamentally involves learning from examples. In the field of bio-medical, pattern recognition and machine learning promise the improved accuracy of perception and diagnosis of disease. They also promote the objectivity of decision-making process. For the analysis of high-dimensional and multimodal bio-medical data, machine learning offers a worthy approach for making classy and automatic algorithms. This survey paper provides the comparative analysis of different machine learning algorithms for diagnosis of different diseases such as heart disease, diabetes disease, liver disease, dengue disease and hepatitis disease. It brings attention towards the suite of machine learning algorithms and tools that are used for the analysis of diseases and decision-making process accordingly.
出处 《Journal of Intelligent Learning Systems and Applications》 2017年第1期1-16,共16页 智能学习系统与应用(英文)
关键词 MACHINE LEARNING Artificial INTELLIGENCE MACHINE LEARNING Techniques Machine Learning Artificial Intelligence Machine Learning Techniques
  • 相关文献

同被引文献94

引证文献15

二级引证文献97

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部