期刊文献+

Degradation of Japanese Lacquer under Wavelength Sensitivity of Light Radiation 被引量:2

Degradation of Japanese Lacquer under Wavelength Sensitivity of Light Radiation
在线阅读 下载PDF
导出
摘要 Degradation of Japanese lacquer caused by light irradiation was examined at various wavelengths. By exposing lacquer specimens to a narrow monochromatic light band isolated from dispersed polychromatic light emitted by a Xe lamp source, the wavelength sensitivity characteristics of lacquer degradation could be determined on the basis of radiant energy. Tame-Urushi (brown) lacquer displayed peak degradation maxima at 220 and 315 nm. A broad shoulder peak was also observed in UVA. For Shu-Urushi (cinnabar) lacquer, in addition to peaks in the UVA–UVB range, a large degree of degradation was observed following exposure to light in the visible range. Ao-Urushi (green) lacquer showed similar characteristics, although it was less prone to degradation. Similarly, Shin-Urushi (black) lacquer showed little change in response to light, although UV light caused limited degradation. These results indicate that along with the damage caused by UVA and UVB, visible light in the range 510 - 650 nm may also have a significant degradation effect. Our results provide experimental evidence that Japanese lacquer responds differently to light of various wavelengths and that specific wavelengths, including visible light, can cause significant degradation. Degradation of Japanese lacquer caused by light irradiation was examined at various wavelengths. By exposing lacquer specimens to a narrow monochromatic light band isolated from dispersed polychromatic light emitted by a Xe lamp source, the wavelength sensitivity characteristics of lacquer degradation could be determined on the basis of radiant energy. Tame-Urushi (brown) lacquer displayed peak degradation maxima at 220 and 315 nm. A broad shoulder peak was also observed in UVA. For Shu-Urushi (cinnabar) lacquer, in addition to peaks in the UVA–UVB range, a large degree of degradation was observed following exposure to light in the visible range. Ao-Urushi (green) lacquer showed similar characteristics, although it was less prone to degradation. Similarly, Shin-Urushi (black) lacquer showed little change in response to light, although UV light caused limited degradation. These results indicate that along with the damage caused by UVA and UVB, visible light in the range 510 - 650 nm may also have a significant degradation effect. Our results provide experimental evidence that Japanese lacquer responds differently to light of various wavelengths and that specific wavelengths, including visible light, can cause significant degradation.
机构地区 不详
出处 《Materials Sciences and Applications》 2011年第10期1507-1515,共9页 材料科学与应用期刊(英文)
关键词 JAPANESE LACQUER DEGRADATION Wavelength Sensitivity MONOCHROMATIC LIGHT Spectral Reflectance VISIBLE LIGHT Japanese Lacquer Degradation Wavelength Sensitivity Monochromatic Light Spectral Reflectance Visible Light
  • 相关文献

同被引文献34

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部