期刊文献+

基于趋势性时间序列的全国碳排放量预测研究 被引量:1

Research on National Carbon Emission Forecasting Based on Trend Time Series
在线阅读 下载PDF
导出
摘要 根据最新数据和趋势分析,中国碳排放量一直处于持续增长的形势,尽管中国政府已经采取推广清洁能源、加强能源效率、推动碳交易市场建设等一系列措施以达到节能减排目的,但中国碳排放量仍然面临诸多问题。因此本文基于2019年1月至2023年3月的1551条日频数据,利用SARIMA、LSTM以及SVR等模型综合考虑时间序列的趋势性,对比分析了不同模型对于碳排放数据的预测效果,结果表明SARIMA模型对于碳排放数据的预测效果优于其余两个模型。 According to the latest data and trend analysis, China’s carbon emissions have been in a situation of continuous growth, and although the Chinese government has taken a series of measures to promote clean energy, strengthen energy efficiency, and promote the construction of carbon trading market to achieve energy conservation and emission reduction, China’s carbon emissions still face many problems. Therefore, in this paper, based on 1551 daily frequency data from January 2019 to March 2023, we compare and analyze the prediction effect of different models for carbon emission data using SARIMA, LSTM and SVR models considering the trend of time series, and the results show that SARIMA model has better prediction effect than the remaining two models for carbon emission data.
作者 钟进 李宗航
出处 《运筹与模糊学》 2023年第4期3870-3881,共12页 Operations Research and Fuzziology
  • 相关文献

参考文献8

二级参考文献107

  • 1董莹,许宝荣,华中,邹松兵,吕斌,陆志翔,毛鸿宁,李芳.基于LMDI的甘肃省碳排放影响因素分解研究[J].兰州大学学报(自然科学版),2020(5):606-614. 被引量:28
  • 2周大地.当前我国能源形势回顾及趋势分析[J].宏观经济研究,2004(11):21-25. 被引量:2
  • 3Vapnik V N. Statistical learning theory[M]. New York, 1998.
  • 4Scholkoph B, Smola A J, Bartlett P L. New support vectoral gorithms[J]. Neural Computation, 2000, 12:1207-1245.
  • 5Suykens J A K, Branbanter J K, Lukas L, et al. Weighted least squares support vector machines: robustness and spare approximation [J]. Neurocomputing, 2002, 48(1): 85-105.
  • 6Lin C-F, Wang S-D. Fuzzy support vector machines[J]. IEEE Trans on Neural Networks, 2002, 13(2): 464-471.
  • 7Tay F E H, Cao L J. Modified support vector machines in financial time series forecasting[J]. Neurocomputing, 2002, 48: 847-861.
  • 8Tay F E H, Cao L J. ε-Descending support vector machines for financial time series forecasting[J]. Neural Processing Letters, 2002, 15(2): 179-195.
  • 9Keoman V, Hadzic I. Support vectors selection by linear programming[A]. Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks[J. Como, Italy, 2000, 5: 193-198.
  • 10Osuna E, Freund R, Girosi F. An improved training algorithm for support vector machine[A]. Proc the 1997 IEEE workshop on neural networks for signal processing[C]. Amelea Island, FL, 1997, 276-285.

共引文献329

同被引文献19

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部