期刊文献+

贝叶斯网络结构学习及其应用研究 被引量:13

Bayesian Network Structure Learning and Its Applications
在线阅读 下载PDF
导出
摘要 阐述了贝叶斯网络结构学习的内容与方法 ,提出一种基于条件独立性 (CI)测试的启发式算法。从完全潜在图出发 ,融入专家知识和先验常识 ,有效地减少网络结构的搜索空间 ,通过变量之间的CI测试 ,将全连接无向图修剪成最优的潜在图 ,近似于有向无环图的无向版。通过汽车故障诊断实例 ,验证了该算法的可行性与有效性。 This paper discusses the purposes and methods of Bayesian network structure learning, then proposes a new algorithm for this task. Based on a fully connected potential graph, we enter the expert knowledge and prior knowledge in order to reduce the query space of the structures. By using CI (conditional independence) tests, it can be pruned a fully connected potential graph to a best PG, which is expected to approximate the undirected version of the underlying directed graph. The experimental results of fault diagnosis in automobile are provided to illustrate the feasibility and efficiency of the new algorithm.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2004年第4期315-318,共4页 Geomatics and Information Science of Wuhan University
基金 国家自然科学基金资助项目 (60 175 0 2 2 )
关键词 贝叶斯网络 结构学习 条件独立性 概率推理 图论 Bayesian network structure learning conditional independence probabilistic reasoning graph theory
  • 相关文献

参考文献12

  • 1[1]Bouckaert R R. Belief Networks Construction Using the Minimum Description Length Principle. Lecture Notes in Computer Science, 1993,747:41~48
  • 2[2]Lam W, Bacchus F. Learning Bayesian Belief Networks: An Approach Based on the MDL Principle. Computational Intelligence, 1994(10):269~293
  • 3[3]Cooper G, Herskovits E. A Bayesian Method for the Induction of Bayesian Networks from Data. Machine Learning, 1992(9):309~347
  • 4[4]Singh M, Valtorta M. Construction of Bayesian Network Structures from Data: A Brief Survey and an Efficient Algorithm. International Journal of Approximate Reasoning,1995(12):111~131
  • 5[5]Chickering D M. Learning Equivalence Classes of Bayesian Network Structures. Journal of Machine Learning Research, 2002(2):445~498
  • 6[6]Pan H P, Liu L. Fuzzy Bayesian Networks-a General Formalism for Representation, Inference and Learn-ing with Hybrid Bayesian Networks. International Journal of Pattern Recognition and Artificial Intelligence, 2000,14(7):941~962
  • 7[7]Heckerman D, Geiger D, Chickering D. Learning Bayesian Networks: The Combination of Knowledge and Statistical Data. Machine Learning, 1995,20(2):197~243
  • 8[8]Herskovits E. Computer-based Probabilistic Networks Construction:[Ph. D Dissertation]. California:Stanford University,1991
  • 9[9]Spirtes P, Glymour C, Scheines R. An Algorithm for Fast Recovery of Sparse Causal Graphs. Social Science Computer Review, 1991(9):62~72
  • 10[10]Cheng J, Bell D A, Liu W. An Algorithm for Bayesian Belief Network Construction from Data. AI & STAT'97, Florida, 1997

同被引文献90

引证文献13

二级引证文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部