期刊文献+

冠心病患者RR间期序列的近似熵分析 被引量:2

The approximate entropy analysis of RR Interval series in coronary heart disease
在线阅读 下载PDF
导出
摘要 目的通过近似熵研究冠心病患者心率变异性(HRV)的改变。方法采用近似熵这种只要较短数据就能表现信号特点的非线性动力学参数进行心率变异性分析。通过静卧-行走和静卧-心算两种实验方案下分别采集健康人(25例)和冠心病患者(26例)的RR间期信号进行方差分析以及近似熵分析。结果发现可以通过HRV的方差和近似熵的相对变化来评价受试者的心率调节机制,尤其在静息-行走应激实验中,行走状态时方差比静息状态时小,而近似熵比静息状态时大(P<0.05)。结论按节拍行走这样的有规律运动有利于冠心病病人心率调节机制的改善。 Objective To study the changes of Heart Rate Variability HRV in patients with coronary heart disease through the analysis of approximate entropy(ApEn).Methods we use ApEn,which is a non-linear dynamics parameter that describes the characteristics of the signals with limited data,to analyze HRV of26patients with coronary heart and25control subjects.Each person's RR intervals were collected from the protocols of the two experiments:from rest to walking,and from rest to count.Results The relative variations ofσ2and ApEn in HRV can be used to estimate the modulation mechanisms of the heart rate of the testees.In the experiment of rest to walking,theσ2of HRV in walking is smaller,and the ApEn is bigger than that in rest (P<0.05).Conclusion Walking in rhythm can improve the modulation mechanisms of the heart rate in patients with coronary heart disease.
出处 《临床心电学杂志》 2004年第1期23-25,共3页 Journal of Clinical Electrocardiology
关键词 冠心病 RR间期序列 近似熵 分析 心率变异性 自主神经 HRV Approximate entropy Autonomic nerves Coronary heart disease
  • 相关文献

参考文献5

二级参考文献12

共引文献117

同被引文献34

  • 1李方洁.Lorenz散点图[J].临床心电学杂志,2005,14(4):307-307. 被引量:26
  • 2Spector PS. Diagnosis and management of sudden cardiac death [J]. Heart. 2005, 91(3): 408-413.
  • 3Pincus SM. Approximate entropy as a measure of system complexity [J]. Proc. Nati. Acad. Sci. USA.1991, 88: 2297-2301.
  • 4Endoh H, Hida S, Oohashi S, Hayashi Yet al. Prompt prediction of successful defibrillation from l-s ventricular fibrillation waveform in patients with out-of-hospital sudden cardiac arrest [J]. J Anesth. 2011; 25(1): 34-41.
  • 5Moody GB+ Mark RG, Goldberger et al. Physionet: a web-based resource for the study of physiologic signals[J]+ IEEE Engineering in medicine and biology. 2001, 20(3): 70-75.
  • 6Goldberger AL, Amaral LAN, Glass L, et al. PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals [J]. Circulation, 2000,101 (23):e215-e220.
  • 7Fell J, Mann K, Roschke Jet al. Nonlinear analysis of continuous ECG during sleep lI.Dynamical measures[J]. Biological Cybernetics, 2000, 82: 485-491.
  • 8Cysarz D, Van Leeuwen P, Edelh user F et al. Binary symbolic dynamics classifies heart rate variability patterns linked to autonomic modulations [EB/oL]. http:// www.ncbi+nlm+nih.gov/ pubmed/21570680.
  • 9Federico Lombardi,MD, FESC. Chaos Theory, Heart. Rate Variability, and Arrhythmic Mortality . Circulation ,2000 : 101
  • 10Irurzun IM, Cordero MC,et al. Non-linear properties of R-R distributions as a measure of heart rate variability . Chaos, Solitons and Fractals, 2003, (16) :699 - 708

引证文献2

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部