期刊文献+

潜变量交互效应分析方法 被引量:83

Methods and Recent Research Development in Analysis of Interaction Effects between Latent Variables
在线阅读 下载PDF
导出
摘要 简要回顾了分析显变量交互效应的常用方法。详细讨论了目前分析潜变量交互效应的主要方法,包括用潜变量的因子得分做回归分析、分组线性结构方程模型分析、加入乘积项的结构方程模型分析和两步最小二乘回归分析,并比较和评价了这些方法的优缺点。最后归纳了潜变量交互效应分析方法的研究趋势,并介绍了新近进展(包括LMS方法和GAPI方法)。 Analysis of interaction, the phenomenon that the effect (including the size and direction) of a certain independent variable (or predictor) depends on the state (size, value) of another independent variable, has always been important in psychological or social research. Methods for the analysis of interaction effects between observed variables were briefly reviewed. The main concern of the article was the detailed comparison and discussion on the analysis of latent variable interactions. Four basic approaches, including regression on factor scores, multiple-group structural equation modeling, structural equation modeling with product terms, and two-stage least square regression, were illustrated and contrasted. Advances in these and other analytical methods, including recently developed latent moderated structural equations (LMS) approach and generalized appended product indicator (GAPI) procedure, were also described and evaluated.
出处 《心理科学进展》 CSSCI CSCD 北大核心 2003年第5期593-599,共7页 Advances in Psychological Science
基金 教育部"十五"重点课题(DBA010169) 中国国家留学基金委员会资助 香港中文大学资助 华南师范大学心理应用研究中心(教育部
关键词 潜变量交互效应分析方法 回归分析 分组线性结构方程模型分析 两步最小二乘回归分析 心理学 latent variable, interaction effect, regression, structural equation modeling (SEM).
  • 相关文献

参考文献24

  • 1[1]Bollen K A. Structural equations with latent variables. New York: Wiley, 1989
  • 2[4]Aiken L S, West S G. Multiple regression: Testing and interpreting interactions. Newbury Park, CA: Sage, 1991
  • 3[5]Cohen J, Cohen P. Applied multiple regression / correlational analysis for the behavioral science. Hillsdale, NJ: Erlbaum, 1975
  • 4[6]Bagozzi R P, Baumgartner H, Yi Y. State versus action orientation and the theory of reasoned action: An application to coupon usage. Journal of Consumer Research, 1992, 18: 505~518
  • 5[7]Anderson T W, Rubin H. Statistical inference in factor analysis. In Proceedings of the third Berkeley symposium (Vol. V). Berkeley, CA: University of California Press, 1956. 111~150
  • 6[8]Joreskog K G. Interaction and nonlinear modeling: issue and approaches. In: Schumacker R E, Marcoulides G A ed. Interaction and nonlinear effects in structural equation modeling. Mahwah, NJ: Erlbaum, 1998. 239~250
  • 7[9]Joreskog K G. Simultaneous factor analysis in several populations. Psychometrika, 1971, 36: 409~426
  • 8[10]Bagozzi R P, Yi Y. On the use of structural equation models in experimental designs. Journal of Marketing Research, 1989, 26(3): 271~284
  • 9[11]MacKenzie S B, Spreng R A. How does motivation moderate the impact of central and peripheral processing on brand attitudes and intentions. Journal of Consumer Research, 1992, 18(1): 519~529
  • 10[12]Hanushek E A, Jackson J E. Statistical methods for social scientists. New York: Academic Press, 1977

同被引文献1832

引证文献83

二级引证文献4756

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部