摘要
                
                    为了获得制备钛酸镧(LaTiO3)薄膜的最优工艺条件,采用电子束热蒸发技术在K9基底上制备了单层LaTiO3激光薄膜。研究了不同工艺条件对LaTiO3薄膜激光损伤特性的影响。研究结果表明,对LaTiO3薄膜激光损伤阈值(laser-induced damage threshold,LIDT)影响最大的工艺条件是沉积温度,其次是工作真空度,最后是蒸发束流。获得了制备单层LaTiO3激光薄膜的最优工艺条件:沉积温度175℃、工作真空度2.0×10-2 Pa、蒸发束流120mA(8keV);证明了最优工艺下制备的LaTiO3薄膜具有良好的激光损伤特性、稳定性以及重复性,所制备LaTiO3薄膜的激光损伤阈值为16.9J/cm2(1 064nm,10ns)。
                
                In order to obtain the optimum deposition processes of monolayer LaTiO3 films,monolayer LaTiO3 films were prepared by electron-beam thermal evaporation technique.The influence of experiment parameters on laser damage properties of LaTiO3 films was investigated.Experiment results show that the greatest influence on the laser-induced damage threshold(LIDT)of LaTiO3 films process conditions is the deposition temperature,followed by the gas pressure,the last is the electron beam current.The optimum deposition processes of LaTiO3 films are obtained:the deposition temperature is 175℃,the gas pressure is 2.0×10-2 Pa,the electron beam current is 120mA(8KeV).It is proved that the LaTiO3 films prepared under the optimum processes conditions has nice laser damage characteristics and the optimum processes conditions possess stability and repeatability.The laser-induced damage threshold of LaTiO3 films is 16.9J/cm2(1 064 nm,10ns).
    
    
    
    
                出处
                
                    《应用光学》
                        
                                CAS
                                CSCD
                                北大核心
                        
                    
                        2015年第6期948-954,共7页
                    
                
                    Journal of Applied Optics
     
            
                基金
                    国家自然科学基金资助项目(61378050)
                    科技部国际合作资助项目(2013DFR70620)
            
    
                关键词
                    薄膜
                    LaTiO3
                    激光损伤
                    工艺优化
                
                        thin films
                        
                        LaTiO3
                        
                        laser-induced damage
                        
                        process optimization