期刊文献+

基于颜色和空间信息的多特征融合目标跟踪算法 被引量:9

Fusing multi-feature for object tracking algorithm based on color and space information
在线阅读 下载PDF
导出
摘要 为解决单一特征目标跟踪鲁棒性较差的问题,提出一种基于颜色和空间信息的多特征融合目标跟踪算法。采用一种自适应划分颜色区间的方法提取目标颜色特征,利用空间直方图提取目标颜色的空间分布信息。在粒子滤波框架下将自适应颜色直方图和空间直方图相结合,在特征融合中引入特征不确定性度量方法,自适应调整不同特征对跟踪结果的贡献,提高算法的鲁棒性。仿真实验结果表明,该跟踪算法平均位置最小误差值仅6.967像素,而单一特征跟踪算法以及传统融合算法的跟踪误差达192.576像素和199.464像素。说明本文算法在跟踪准确性上优于单一特征跟踪算法及传统融合算法,具有更好的跟踪精度和更高的鲁棒性。 Object tracking using single feature often leads to a poor robustness.Aiming at this,an object tracking algorithm using multiple features fusion based on color and space information was presented.In order to enhance the important features,an adaptive method for choosing object color histogram was proposed to get an accurate color model of the object.Meanwhile,spatiograms were used to obtain spatial layout of these colors for the targets.These features were rationally fused in the framework of particle filter.The uncertainty measurement method was then introduced into features fusion to adjust the relative contributions of different features adaptively,and the robustness of the algorithm was significantly enhanced.Simulation experimental results show that the mean minimum location error of the proposed tracking algorithm is only 6.967 pixel,while that of the signal feature tracking algorithm and the traditional algorithm are 192.576 pixel and 199.464 pixel,respectively,which indicates that the proposed algorithm can track objects with better tracking accuracy and robustness.
出处 《应用光学》 CAS CSCD 北大核心 2015年第5期755-761,共7页 Journal of Applied Optics
基金 国家自然科学基金(61175029 61473309)
关键词 目标跟踪 自适应颜色直方图 空间直方图 多特征融合 object tracking adaptive color histogram spatiograms multi-feature fusion
  • 相关文献

参考文献1

二级参考文献15

  • 1Zhang Q, Zou DW, Hai Y, et al. Primary result on treat-ment of OVCFs with PKP. Zhong Hua Chuang Shang Gu Ke Za Zhi 2006; 8 (5): 497.
  • 2Michael HL, Mark D, Patrick C, et al. Percutaneous Treatment of Vertebral Compressive Fracture: A Meta-anal-ysis of Complications. Spine 2009; 34 (11): 1228.
  • 3Xu S], Huang YM, Shi YX, et al. Influence ofPKP on ver-tebral height and pain of OVCFs. Guangdong Yi Xue 2009; 30 (10): 1518.
  • 4Huang Z], Chen JX, Bai YB. Clinical research into treat-ment of osteoporosis with ZSGK pill. Sheng Wu Ji Shu Tong Xun 2008; 19 (2): 263-264.
  • 5Liu ZH, Yang YZ, Zhu HM, et al. Suggested standard for diagnosing osteoporosis of Chinese people. Zhong Guo Gu Zhi Shu Song Za Zhi 2000; 6 (1): l.
  • 6Chi YL. Vertebral micro-traumatic surgery. Beijing: Peo-ple's Press of Military Medicine, 2006: 553-566.
  • 7Lin ]T, Lane JM. Osteoporosis: a review. Clin Orthop Relat Res 2004: 126-134.
  • 8Zhou W, Li LJ, Qian L, et al. Treatment of OVCFs with closed reposition PKP. Zhong Guo Gu Shang Yu Guan Jie Sun Shang Za Zhi 2010; 25 (1): 48-49.
  • 9Wang WP, Liu ZS. Observations on alleviating pain in treatment of OVCFs with PKP. Zhong Guo Gu Shang Yu Guan Jie Sun Shang Za Zhi 2007; 22 (1): 68-69.
  • 10Mckiernan F, Faciszewski T, Jensen R. Quality of life following vertebroplasty. Bone Joint Surg Am 2004; 86-A (12): 2006.

共引文献12

同被引文献68

  • 1崔玮玮,曹志刚,魏建强.声源定位中的时延估计技术[J].数据采集与处理,2007,22(1):90-99. 被引量:95
  • 2李培华.一种改进的Mean Shift跟踪算法[J].自动化学报,2007,33(4):347-354. 被引量:53
  • 3钟小品,薛建儒,郑南宁,平林江.基于融合策略自适应的多线索跟踪方法[J].电子与信息学报,2007,29(5):1017-1022. 被引量:21
  • 4宋新,沈振康,王平,王鲁平.Mean shift在目标跟踪中的应用[J].系统工程与电子技术,2007,29(9):1405-1409. 被引量:30
  • 5Smeulders A, Chu D, Cucchiara R, et al. Visual Tracking: An Experimental Survey [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014,36 ( 7 ) : 1442-1468.
  • 6Yang Hanxuan, Shao Ling, Zheng Feng, et al. Recent Advances and Trends in Visual Tracking : A Review [ J]. Neurocomputing ,2011,74 ( 18 ) :3823-3831.
  • 7Zhao Guoying, Pietikainen M. Dynamic Texture Recogni- tion Using Local Binary Patterns with an Application to Facial Expressions [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(6) :915-928.
  • 8Comaniciu D, Ramesh V, Meer P. Kernel-based Object Tracking [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003,25 ( 5 ) : 564-577.
  • 9Avidan S. SuppOrt Vector Tracking [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence ,2004,26 (8) : 1064-1072.
  • 10Hinton G E, Salakhutdinov R R. Reducing the Dimensionality of Data with Neural Networks [ J ]. Science, 2006,313 ( 5786 ) : 504-507.

引证文献9

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部