期刊文献+

一类具有潜伏时滞和非线性疾病发生率的SEIRS传染病模型 被引量:7

An SEIRS Epidemiological Model with Time Delay Describing a Latent Period and Nonlinear Incidence Rate
原文传递
导出
摘要 本文提出一类具有潜伏时滞和非线性疾病发生率的SEIRS传染病模型,通过分析对应的特征方程,运用时滞微分方程的稳定性理论得出:当基本再生数R_0<1时无病平衡点处的局部渐近稳定性,R_0> 1时地方病平衡点处的局部渐近稳定性.通过构造Lyapunov泛函,运用LaSalle's不变集原理得到:当基本再生数R_0≤1时无病平衡点处的全局渐近稳定性;通过比较方法得到R_0> In this paper,an SEIRS epidemiological with nonlinear incidence rate and time delay representing a latent period of the disease is investigated.By analyzing the corresponding characteristic equations and using the stability theory of delay differential equations,when the basic reproduction number R0<1,the local stability of a disease-free equilibrium is obtained;the endemic equilibrium is locally asymptotically stable if R0>1.By Lyapunov functional and LaSalle’s invariant set principle,it is proved that if R0≤1,the disease-free equilibrium is globally asymptotically stable.By comparison,if R0>1,the system is uniformly persistent.
作者 魏泽萍 刘贤宁 WEI Ze-ping;LIU Xian-ning(School of Mathematics and Statistics,Southwest University,Chongqing 400715 China)
出处 《生物数学学报》 2019年第1期63-74,共12页 Journal of Biomathematics
基金 国家自然科学基金项目(11671327)
关键词 SEIRS模型 时滞 非线性疾病发生率 稳定性 持久性 SEIRS model Time delay Nonlinear incidence rate Stability Permanence
作者简介 魏泽萍(1993-),女,土家族,贵州湄潭县人,碩士研究生.E-mail:1311250342@qq.com;通讯作者:刘贤宁。
  • 相关文献

参考文献3

二级参考文献21

  • 1付景超,井元伟,张中华,张嗣瀛.具垂直传染和连续预防接种的SIRS传染病模型的研究[J].生物数学学报,2008,23(2):273-278. 被引量:33
  • 2杨建雅,张凤琴.一类具有垂直传染的SIR传染病模型[J].生物数学学报,2006,21(3):341-344. 被引量:23
  • 3Beretta E, Takeuchi Y. Global stability of an SIR epidemic model with time delays[J]. J Math Biol, 1995,33 : 250- 260.
  • 4Beretta E, Takeuchi Y. Convergence results in SIR epidemic model with varying population sizes[J]. Nonl Anal, 1997,28:1909-1921.
  • 5Beretta E, Hara T, Ma W, Takeuchi Y. Global asymptotically stability of an SIR epidemic model with distributed time delay[J]. Nonl Anal,2001,47:4107-4115.
  • 6Hale J K. Theory of Functional Differential Equations[M]. Springer-Verlag, New York, 1977.
  • 7Kuang Y. Delay Differential Equations with Applications in Population Dynamics [M]. Academic Press, San Diego, 1993.
  • 8Hethcote H W. Qualitative analyses of communicable disease models[J].Math Biosci, 1976,7:335-356.
  • 9MENA-LORCA, HETHCOTE H W. Dynamic models of infectious disease as regulators of population biology[J]. J Math Biol, 1992,30 : 693-716.
  • 10GAO L, HETHCOTE H W. Disease transmission models with density-dependent demographics [J].J Math Biol, 1992,30:717-731.

共引文献10

同被引文献46

引证文献7

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部