期刊文献+

基于局部字典块稀疏表示的SAR图像目标识别方法 被引量:1

SAR Target Recognition via Block Sparse Representation on Local Dictionary
在线阅读 下载PDF
导出
摘要 本文提出了基于局部字典块稀疏表示的合成孔径雷达(Synthetic Aperture Radar,SAR)目标识别算法。采用各个训练类别分别对待识别样本进行重构。通过对比各个类别对于待识别样本的绝对描述能力,即重构误差的大小,确定目标类别。考虑到SAR图像方位角的敏感性,当训练样本按照方位角次序排列时,基于局部字典求解的稀疏表示系数具有块结构。为此,本文采用块稀疏算法求解局部字典上的线性表示系数从而获得更高的精度。为了验证提出算法的有效性,基于MSTAR数据集分别在标准操作条件和多种扩展操作条件下进行了目标识别实验。 This paper proposes a synthetic aperture radar(SAR)target recognition method based on block sparse representation on local dictionary.The test sample is represented by training samples from individual classes and then the absolute representation capabilities,i.e.the reconstruction errors,of different classes are compared to determine the target type.Considering the azimuthal sensitivity of SAR images,the sparse coefficient vector over the local dictionary has the block structure when the training samples are sorted according to their azimuths.Hence,the block sparse representation is employed to solve the representation coefficients on the local dictionary thus achieving higher precision.To validate the effeteness of the proposed method,experiments are conducted on public MSTAR(moving and stationary target acquisition and recognition)dataset under standard operating condition(SOC)and several extended operating condition(EOC).
作者 郭敦 吴志军 GUO Dun;WU Zhi-jun(Jiangxi Institute of Fashion Technology,Jiangxi Nanchang330201,China;Jiangxi Normal University,Jiangxi Nanchang330201,China;Hunan Institute of Science and Technology,Hunan Yueyang414006,China)
出处 《中国电子科学研究院学报》 北大核心 2019年第8期813-817,829,共6页 Journal of China Academy of Electronics and Information Technology
关键词 合成孔径雷达 目标识别 局部字典 块稀疏表示 Synthetic Aperture Radar(SAR) target recognition local dictionary block sparse representation
作者简介 郭敦(1978—),男,江西人,硕士,讲师,主要研究方向为计算机应用技术,移动互联网、高校智慧校园,E-mail:lotus_summer117@163.com;吴志军(1984—),男,湖南人,硕士,讲师,主要研究方向为计算机应用技术,图像处理技术。
  • 相关文献

参考文献4

二级参考文献95

  • 1吴敏,张磊,邢孟道,段佳,徐刚.基于分布式压缩感知的全极化雷达超分辨成像[J].电波科学学报,2015,30(1):29-36. 被引量:4
  • 2徐牧,王雪松,肖顺平.基于Hough变换与目标主轴提取的SAR图像目标方位角估计方法[J].电子与信息学报,2007,29(2):370-374. 被引量:16
  • 3Donoho D L. Compressed Sensing [ J ]. IEEE T. Inform. Theory. ,2006,52(4) : 1289-1306.
  • 4Candies E J ,Wakin M B. An Introduction To Compressive Sampling[J]. IEEE Signal. Proc. Mag. ,2008,25(2) : 21-30.
  • 5Unser M. Sampling-50 Years after Shannon [ J ]. Proceed- ings of the IEEE, 2000,88 (4) : 569 -587.
  • 6DeVore R A, Jawerth B, Lucier B J. Image compression through wavelet transform coding [ J ]. IEEE Transactions on Information Theory, 1992,38 (2) :719-746.
  • 7Fadili M J, Starck J L, Bobin J, et al. Image decomposi- tion and separation using sparse representations: An over- view [ J ]. Proceedings of the IEEE, IEEE, 2010,98 (6) : 983 -994.
  • 8Bertalmio M, Vese L, Sapiro G, et al. Simultaneous Struc- ture and Texture Image Inpainting [ J ]. IEEE T. Image. Process. ,2003,12 ( 8 ) :882- 889.
  • 9Elad M, Starck J-L, Querre P, et al. Simultaneous Cartoon and Texture Image Inpainting using Morphological Compo- nent Analysis (MCA) [ J]. Applied and Computational Harmonic Analysis ,2005,19 ( 3 ) :340-358.
  • 10Huang K, Aviyent S. Sparse Representation for Signal Classification [ C ]////NIPS. 2007 : 609 - 616.

共引文献150

同被引文献14

引证文献1

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部