摘要
由数域 F上任意n阶矩阵A可得一个伴随矩阵A(或记为(A),我们称A为 A的一次伴随,对A来讲又有伴矩阵A,称为A的二次伴随.一般地,一个n阶矩阵A有任意m次伴随,为了书写方便,我们把A的m次伴随记为A(m)(相应地A记为A(2))。对于二次以上(包括二次)的伴随矩阵,我们统称为高次伴随矩阵.本文给出求高次伴随矩阵及其特征根的公式.
Abstract:We could get an adjoint matrix A, (or(A)~ ), according to a random the nth matrixA, on field F, which we called it the once concomitance for A, there is an adjoint matrix A forA,which is called the twice concomitance for A. In the general, there are random m timesconcomitance for the nth matrix A, for writing convenience, we write m times concomitancefor A as A^(m), (ie A as A^(2). )We called them higher degree adjoint for more than two times(including two times). This paper introduced the ways how to compute higher degree adjointmatrix arid the formula of its latent roots.
出处
《吉林建筑工程学院学报》
CAS
2001年第1期59-62,共4页
Journal of Jilin Architectural and Civil Engineering
关键词
高次伴随矩阵
高次伴随矩阵公式
特征根
Keywords: higher degree adjoint matrix
formula of higher degree adjoint matrix
latent roots