期刊文献+

曲梁自由振动微分方程的解耦解法及验证 被引量:5

Decoupling Solution and Verification of Free Vibration Equation of Curved Beam
原文传递
导出
摘要 基于欧拉-伯努利梁模型,建立圆弧曲梁的自由振动微分方程,通过理论推导给出微分方程的解耦解法,使用有限元方法对理论方法进行验证。结果表明,在低频范围内,采用理论方法计算得到的曲梁模型的模态频率与使用有限元方法计算得到的模态频率的差值不到2%,证明了曲梁振动微分方程解耦解法的正确性。 Based on Euler-Bernoulli beam model, this paper establishes the differential equation of arc-curved beam in the free vibration state, and the decoupling solution is theoretically derived, and verified with FEM method. The results show that the modal frequency results of the theoretic method differ from the ones of FEM method within 2% in the low-frequency area.
出处 《核动力工程》 EI CAS CSCD 北大核心 2016年第S2期7-10,共4页 Nuclear Power Engineering
关键词 曲梁 振动微分方程 解耦 有限元方法 验证 Curved beam Vibration differential equation Decoupling FEM Verification
  • 相关文献

参考文献3

二级参考文献24

  • 1张罗溪.曲梁结构矩阵分析[J].铁道学报,1993,15(1):80-86. 被引量:8
  • 2段海娟,赵人达.薄壁曲线箱梁空间分析的梁段单元[J].土木工程学报,2004,37(12):1-5. 被引量:10
  • 3黄剑源,谢旭.薄壁曲线杆系结构空间分析的刚度法[J].土木工程学报,1994,27(5):3-19. 被引量:37
  • 4赵颖华,李秀文,徐进.两端简支超静定曲线梁横向位移解析分析[J].沈阳建筑大学学报(自然科学版),2005,21(3):189-191. 被引量:7
  • 5袁驷,和雪峰.基于EEP法的一维有限元自适应求解[J].应用数学和力学,2006,27(11):1280-1291. 被引量:14
  • 6Kapania R K, Li J. A formulation and implementa- tion of geometrically exact curved beam elements in- corporating finite strains and finite rotations [J ]. Computational Mechanics, 2003, 30 ( 5/6 ) : 444 - 459.
  • 7Kapania R K, Li J. A formulation and implementa- tion of geometrically exact curved beam elements in- corporating finite strains and finite rotations [ J ]. Computational Mechanics, 2003,30 ( 5/6 ) : 444 - 459.
  • 8Kim N I, Yun H T, Kim M Y. Exact static element stiffness matrices of non - symmetric thin - walled curved beams [ J ]. Int. J Numer Meth Engng, 2004, 61 (2) :274 - 302.
  • 9Chai H Y, Jon P F. Natural frequency of curved gird- er[ J]. Journal of the Engineering Mechanics Divi- sion, April, 1981,107:337 - 354.
  • 10Kim N I, Yun H T, Kim M Y. Exact static element stiffness matrices of non - symmetric thin - walled curved beams [ J ]. International Journal for Numeri- cal Methods in Engineering, 2004,61 ( 2 ) : 274 - 302.

共引文献19

同被引文献35

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部