摘要
基于欧拉-伯努利梁模型,建立圆弧曲梁的自由振动微分方程,通过理论推导给出微分方程的解耦解法,使用有限元方法对理论方法进行验证。结果表明,在低频范围内,采用理论方法计算得到的曲梁模型的模态频率与使用有限元方法计算得到的模态频率的差值不到2%,证明了曲梁振动微分方程解耦解法的正确性。
Based on Euler-Bernoulli beam model, this paper establishes the differential equation of arc-curved beam in the free vibration state, and the decoupling solution is theoretically derived, and verified with FEM method. The results show that the modal frequency results of the theoretic method differ from the ones of FEM method within 2% in the low-frequency area.
出处
《核动力工程》
EI
CAS
CSCD
北大核心
2016年第S2期7-10,共4页
Nuclear Power Engineering
关键词
曲梁
振动微分方程
解耦
有限元方法
验证
Curved beam
Vibration differential equation
Decoupling
FEM
Verification