期刊文献+

中文网络安全威胁情报实体关系抽取

Entity Relation Extraction of Chinese Cyber Threat Intelligence
在线阅读 下载PDF
导出
摘要 为实现中文网络安全威胁情报知识图谱的构建,探索一种融合改进的Focal Loss和多粒度卷积神经网络的多分类方法,对情报中文本的实体关系进行抽取。针对中文网络安全威胁情报多种关系类型中存在的长尾问题,通过改进Focal Loss损失函数,增强对难区分样本的学习,提高模型的分类能力;针对情报内中英文词汇混杂以及专业词汇众多导致的关键词汇长度的方差较大,模型学习困难的问题,提出采用多粒度卷积神经网络的方法捕捉不同粒度的语句特征,提升模型在分类任务上的效果。对比实验表明,与在其他领域常用的分类方法相比,所提出的MCNNFL模型的Weighted-F1值和正确率显著提高,提升了中文网络安全威胁情报文本实体关系抽取的效果。消融实验表明,针对上述两个问题提出的两种方法皆可提升模型性能,且可以同时使用。 To achieve the construction of a Chinese cyber threat intelligence knowledge graph,a multi-classification approach was explored that combined an enhanced focal loss with a multi-scale convolutional neural network.This approach was used to extract entity relationships from the text.To address the long-tail problem within Chinese cyber threat intelligence relation extraction,the Focal loss function was improved to enhance the learning of challenging samples.To tackle the problem of significant variance in keyword lengths caused by the mixture of Chinese and English vocabulary and the abundance of specialized terms in intelligence,a multi-granularity convolutional neural network was employed to capture features of statements at different scales.This approach enhanced the model's performance in the task.The comparative experiments demonstrate that the Weighted-F1 score and accuracy of the proposed MCNNFL model are significantly higher compared to the methods commonly used in other fields.Ablation experiments indicate that both proposed methods for the problems mentioned above can improve model performance and boost performance simultaneously.
作者 甄珍 高见 宋佳林 ZHEN Zhen;GAO Jian;SONG Jia-lin(School of Information and Network Security,People's Public Security University of China,Beijing 100038,China;First Research Institute of the Ministry of Public Security of PRC,Beijing 100048,China)
出处 《科学技术与工程》 北大核心 2025年第24期10344-10350,共7页 Science Technology and Engineering
基金 中国人民公安大学中央基本科研业务费项目(2024JKF17)。
关键词 中文网络安全威胁情报 实体关系抽取 卷积神经网络(CNN) Chinese cyber threat intelligence entity relation extraction convolutional neural network(CNN)
作者简介 第一作者:甄珍(2000-),女,汉族,北京人,硕士研究生。研究方向:网络安全威胁情报、自然语言处理。E-mail:2022211476@stu.ppsuc.edu.cn。;通信作者:高见(1982-),男,汉族,山东菏泽人,博士,副教授,硕士研究生导师。研究方向:网络安全、网络安全威胁情报、恶意软件、僵尸网络等。E-mail:gaojian@ppsuc.edu.cn。
  • 相关文献

参考文献11

二级参考文献92

共引文献278

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部