期刊文献+

面向新兴产业的检验检测服务关系抽取 被引量:1

Detection service relation extraction for emerging industries
在线阅读 下载PDF
导出
摘要 挖掘新兴产业中的检测信息有利于发现检测机构的检测能力,促进机构合作,加速产业升级。针对新兴产业检验检测数据存在语义混乱、一个主实体对应多个客实体的问题,本文提出一种混合关系标签的深度神经网络实体关系抽取模型。在输入层,构建基于关系的标签,并与语义信息拼接形成模型的输入,增强了模型对不同关系的区分度;在特征提取层,使用双向长短期神经网络与卷积神经网络,从整体与局部提升模型对主客实体特征的抽取能力,同时引入注意力机制,削弱无关特征的影响,提升模型对主客实体的识别能力。实验结果表明,该模型不仅能有效识别出新兴产业检验检测领域的实体,而且能精准判断实体之间的关系,取得了较好的结果。 Mining detection information in emerging industries is conducive to discovering detection capabilities of detection institutions,promoting cooperation between institutions and accelerating industrial upgrading.In order to solve the problem of semantic confusion in the inspection data of emerging industries,a deep neural network entity relation extraction model based on mixed relation labels is proposed in this paper.At the input layer,the labels based on relationships are constructed and the input of the model is spliced together with semantic information to enhance the differentiation of different relationships.At the feature extraction layer,bidirectional long and short-term neural network and convolutional neural network are used to improve the feature extraction ability of the model.Meanwhile,attention mechanism is introduced to weaken the influence of irrelevant features and improve the recognition ability of the model to host and object entities.The experimental results show that the model can not only identify the entities in the inspection and testing field of emerging industries,but also accurately judge the relationship between entities,achieving good experimental results.
作者 张婷婷 让冉 张龙波 邢林林 蔡红珍 ZHANG Tingting;RANG Ran;ZHANG Longbo;XING Linlin;CAI Hongzhen(College of Computer Science and Technology,Shandong University of Science and Technology,Zibo Shandong,255000,China;College of Agricultural Engineering and Food Science,Shandong University of Technology,Zibo Shandong,255000,China)
出处 《智能计算机与应用》 2022年第2期32-36,43,共6页 Intelligent Computer and Applications
基金 国家重点研发计划资助项目(2018YFB1403302)
关键词 新兴产业 检验检测 关系抽取 标签 卷积神经网络 emerging industries inspection and testing relation extraction labels convolution neural network
作者简介 张婷婷(1995-),女,硕士研究生,主要研究方向:自然语言处理;让冉(1998-),女,硕士研究生,主要研究方向:自然语言处理;张龙波(1968-),男,博士,教授,硕士生导师,主要研究方向:数据挖掘;通讯作者:邢林林(1987-),男,博士,讲师,主要研究方向:生物信息学,Email:xinglinlin@sdut.edu.cn;蔡红珍(1972-),女,博士,教授,博士生导师,主要研究方向:复合材料。
  • 相关文献

参考文献10

二级参考文献63

共引文献305

同被引文献15

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部