期刊文献+

ASA材料表面疏水疏油改性的技术研究

Research on Hydrophobic and Oleophobic Modification Technology of ASA Materials
在线阅读 下载PDF
导出
摘要 随着汽车消费群体日趋年轻化与时尚化,对汽车内外饰色彩呈现多元化需求,同时对汽车内饰的耐脏污功能性需求也日益增加。耐脏污技术的实质是疏水和疏油,低表面能和表面微纳结构是实现双疏性能的关键。受荷叶疏水特性的启发,在零部件表面构筑微纳结构,有望实现真正意义的超疏水。但是,微纳结构加工成本高、使用耐久性低,在汽车工业界内尚未大范围推广。苯乙烯-丙烯腈-丙烯酸丁酯三元共聚物(ASA)具有优异的耐光老化性能,同时还兼具优异的耐化学腐蚀性和抗应力开裂性。以ASA为基体树脂,选择低表面能技术路线,通过引入合适的低表面能添加剂对其进行改性,并系统研究其疏水与疏油性能。通过实验验证,有机聚硅氧烷能够显著提升ASA材料的疏水性能,但对其疏油性能提升的幅度较小。值得注意的是,经高温烘烤处理后,低分子量物质会向材料表面迁移,这一过程可进一步强化ASA材料的亲疏水特性。由于氟的表面能更低,其疏油性能明显优于有机硅,因此对硅烷进行有机氟改性,可进一步提升材料的疏油性能。氟树脂对ASA材料双疏性能的影响,主要与两者的相容性及氟原子的覆盖均匀度有关。通过选择合适的改性氟树脂,不仅使其能够实现在ASA材料中均匀的分布和分散,而且其中含氟有机链段还可以较大面积地覆盖样品表面。实验结果表明,经改性处理后的ASA材料的水接触角从70°提高至120°、二碘甲烷接触角从40°提高至60°、正十六烷接触角从20°提高至60°,该材料经二碘甲烷沾污后可轻易擦除。改性后的ASA材料具有耐脏污属性,有望在汽车内饰领域中全面推广。 As automotive consumers become increasingly younger and more fashion-conscious,colors of automotive interiors and exteriors are diversifying,driving increased demand for stain-resistant interior experiences.The essence of dirt-resistant technology is hydrophobicity and oleophobicity,and low surface energy and surface micro-nano structures are key to own amphiphobic properties.Inspired by the hydrophobicity of lotus leaves,constructing micro-nano structures on the surface of components is expected to achieve superhydrophobicity in the true sense.However,high processing costs and low durability of micro-nano structures have limited their widespread adoption in automotive applications.This study adopted a low-surfaceenergy technology route,modifying ASA materials(styrene-acrylonitrile-butyl acrylate terpolymer with excellent UV aging resistance,chemical resistance,and environmental stress cracking resistance)by incorporating low-surface-energy additives.Organic polysiloxanes significantly enhance hydrophobicity,but have a less effect on oleophobicity.High-temperature baking facilitates migration of low molecular weight substances to the samples’surfaces,amplifying hydrophobic properties.Fluorine exhibits lower surface energy and better oleophobic performance than silicone.Organofluorine-modified silanes further enhance oleophobicity.The effect of fluororesins on the ASA amphiphobic properties depends on their compatibility with ASA and the uniformity of fluorine atom coverage.By choosing a suitable modified fluororesin,both uniform distribution and dispersion in ASA materials were realized.Its organofluorine chain segments cover a larger area of the sample surface,achieving an increase in the water contact angle from 70°to 120°,the contact angle of diiodomethane from 40°to 60°,and that of hexadecane from 20°to 60°.The material can be easily wiped off after being stained by diiodomethane,exhibiting promising dirt-resistance properties for automotive interior applications.
作者 胡志华 王琪 翁琳 林荣涛 李明昆 付锦锋 吴俊 陈平绪 叶南飚 HU Zhihua;WANG Qi;WENG Lin;LIN Rongtao;LI Mingkun;FU Jinfeng;WU Jun;CHEN Pingxu;YE Nanbiao(Kingfa Science and Technology,Co.,Ltd.,Guangzhou 510663,China;Liaoning Kingfa Technology Co.,Ltd.,Panjin 124211,China)
出处 《材料研究与应用》 2025年第5期899-908,I0003,共11页 Materials Research and Application
关键词 苯乙烯-丙烯腈-丙烯酸丁酯三元共聚物 低表面能 疏水 疏油 耐脏污 有机聚硅氧烷 氟树脂 接触角 ASA low-surface-energy hydrophobicity oleophobicity dirt-resistant organic polysiloxanes fluororesin contact angle
作者简介 通信作者:王琪,博士,高级工程师。长期从事苯乙烯基类聚合物及其合金材料的树脂合成、结构设计、相态演化、界面赋能、寿命调控、美感升级等基础研究和技术攻关工作。开发了高性能苯乙烯基聚合物材料、免喷涂高光黑汽车外饰材料、超低光泽低散发汽车内饰材料、长期服役抗老化功能材料等产品,并成功实现产业化。技术成果广泛应用于汽车、家电和新能源等领域,获得良好的社会经济效益。支撑关键设备和树脂原料国产化,打破国外长期垄断的局面。作为项目骨干承担国家级重点研发计划3项,省级重点项目1项,已顺利结题3项,具有良好的产业化示范效应。在国内外期刊发表学术论文10余篇,获得发明专利授权36件。研究方向为高分子材料。E-mail:wangqi@kingfa.com.cn。
  • 相关文献

参考文献8

二级参考文献66

  • 1黄智勇,卢燕勤.润湿剂、消泡剂在水性木器漆中的应用[J].中国涂料,2006,21(5):40-41. 被引量:9
  • 2Park I J, Lee S B, Choi C K, et al. Surface properties and structure of poly ( perfluoma.qkylethyl athacrylate) [ J ]. J. Colloid Interf. Sci., 1996, 181 (1): 284-289.
  • 3Sharma S C, Acharya D P, Garcia-Rornan M, et al. Phase behavior and surface tensions of amphiphilic fluorinated random copolymer aqueous solutions [J]. Colloids and Surfaces A: Physic and Chem. Eng. Aspects, 2006, 280: 140-145.
  • 4Lewandowski G, Meissner E, Milchert E. Special applications of fluorinated organic cornpounds[J ]. Journal of Hazardous Materials, 2006, 36: 385-391.
  • 5Rodriguez C, Kunieda H, Noguehi Y, et al. Surface- tension properties of novel phosphoct~oline- based fluorinated surfactants [J]. J. Colloid Interf. Sci., 2001, 242: 255-258.
  • 6Li G, Shen Y, Ren Q. Effect of fluorinated acrylate on the surface properties of cationic fluorinated polyurethane-acrylate hybrid dispersions[J]. J. Appl. Polym. Sei., 2005, 97: 2192-2196.
  • 7Zhang C, Chen Y. Investigation of fluorinated polyacrylate latex withe ore-shell structure [J]. Polym. Inter., 2005, 54: 1027- 1033.
  • 8SCHEIRS J, PRIDDY D. Modern styrenic polymers: poly-styrenes and styrenic copolymers [ M ]. West Sussex: Jon Wiley&Sons, Ltd, 2003: 341.
  • 9HEINER G, HERBERT M, GRAHAM E. ASA molding compounds for producing shaped parts: US, 6683133 [ P]. 2004 - 01 - 27.
  • 10GUNTHERBERG N, WEBER M, LINDENSCHMIDT G, et al. Thermoplastic molding compositions based on acryloni- trile-styrene-acrylate polymers: US, 6531543 [P]. 2003 - 03 - 11.

共引文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部