期刊文献+

基于NSGA-Ⅱ算法与智慧水务技术的变频泵站多目标优化运行研究

Research on Multi-objective Optimization Operation of Variable Frequency Pump Station Based on NSGA-Ⅱ Algorithm and Smart Water Technology
在线阅读 下载PDF
导出
摘要 城市供水泵站在传统人工经验下制定的机组运行策略常导致机组效率下降、维护费用增加,造成能源浪费。建立了基于NSGA-Ⅱ算法的多目标能耗优化模型,考虑泵站机组相邻时段开机状态的影响,在满足用户用水需求的基础上,求解最优的水泵运行组合,降低能源浪费。以北京市某供水泵站为案例,按时段进行优化调度,对比优化前后能耗,结果表明多目标优化模型在控制机组开停机次数上具有显著优势,日节能比可达8.87%,且运行策略稳定。 The operational strategies for urban water supply pump stations formulated under traditional human experience often lead to reduced efficiency of the units,increased maintenance costs,and significant waste of energy.This paper establishes a multi-objective energy consumption optimization model based on the NSGA-Ⅱ algorithm,taking into account the impact of the operat-ing status of pump station units in adjacent time periods.The model aims to meet user water de-mand while solving for the optimal combination of pump operations to reduce energy waste.Tak-ing a water supply pump station in Beijing as a case study,optimization scheduling was conducted by the hour.A comparison of energy consumption before and after optimization reveals that the multi-objective optimization model offers a significant advantage in controlling the number of unit start-ups and shutdowns.The results of the operational strategies from multiple calculations are stable,with a daily energy saving rate still reaching 8.87%.
作者 张林 赵顺萍 刘阔 岳靖淋 陈哲 卢悦 ZHANG Lin;ZHAO Shunping;LIU Kuo;YUE Jinglin;CHEN Zhe;LU Yue(Beijing Waterworks Group Co.,Ltd.,Beijing 100031,China)
出处 《给水排水》 北大核心 2025年第8期147-152,共6页 Water & Wastewater Engineering
关键词 供水泵站 运行调控 遗传算法 多目标优化 智慧水务 Pump station Operation and control Genetic algorithm Multi-objective optimization Smart water technology
作者简介 通信作者:赵顺萍,女,1968年出生,北京人,研究生,教授级高级工程师。主要研究方向为给水排水。通信处:100031北京市西城区宣武门西大街甲121号,E-mail:609576350@qq.com。
  • 相关文献

参考文献6

二级参考文献31

  • 1李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 2郭慧芳,莫连光.灰色关联理论运用于农民收入分析的研究[J].财贸研究,2007,18(1):31-37. 被引量:29
  • 3Xia X, Zhang J. Control systems and energy efficiency from the POET perspective [ C]//IFAC. Conference on Control Methodologies and Technology for Energy Efficiency. Vilamoura: IFAC, 2010.
  • 4Zhang J, Xia X, Alexander D. Demand side optimal strategy for voluntary load shedding [ C ] //lASTED. The second IASTED Africa conference on power and energy system. Gaborone : IASTED ,2008.
  • 5Bar6n B, Von Ltieken C, Sotelo A. Multi-objective pumpscheduling optimisation using evolutionary strategies [ J ]. Advances in Engineering Software. 2005, 36( 1 ) : 39-47.
  • 6Beckwith S P,Wong K P. A genetic algorithm approach for electric pump scheduling in water supply systems [ C ] // IEEE. International Conference on Evolutionary Computation. Perth:IEEE, 1996.
  • 7Moreno M A, Planells P, C6rcoles J I, et al. Development of a new methodology to obtain the characteristic pump curves that minimize the total cost at pumping stations [ J ]. Biosystems Egineering, 2009, 102( 1 ) : 95-105.
  • 8Moreno S A, Carri6n P A, Planells P, et al. Measurement and improvement of the energy efficiency at pumping stations [J]. Biosystems Engineering, 2007, 98(4): 479-486.
  • 9Lertpalangsuntia N, Chana C W, Masonb R, et al. A toolset for construction of hybrid intelligent forecasting systems: application for water demand prediction [ J ]. Artificial Intelligence in Engineering, 1999, 13 (1): 21-42.
  • 10Zhou S L, McMahan T A, Walton A, et al. Forecasting operational demand for an urban water supply zone [ J ]. Journal of Hydrology, 2002, 259 : 189-202.

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部