期刊文献+

泵站能效累计运行时间多目标优化调度 被引量:3

Multi-Objective Optimal Scheduling of Pump Stations in Term of Energy Efficiency and Accumulative Running Time
在线阅读 下载PDF
导出
摘要 为了获得泵站高能源效率并使各泵组累计运行时间趋于一致,分别建立了峰谷电价下泵站能源费用及泵组累计运行时间差两个目标函数,以水厂取水泵站为研究对象,建立了优化问题的约束并提出了基于粒子群优化的求解方法.仿真结果表明:所提出的多目标优化调度方法切实可行,能实现两个优化目标的平衡,且满足取水泵站优化调度需求. A multi-objective optimal scheduling approach of pump stations is proposed in this paper, with the purpose to get better energy efficiency and reduce the gaps between the accumulative running times of pump units. An intake pump station of a water treatment plant is taken as a case study, where the constraints of the corresponding optimization problems are formulated. Particle swarm optimization technique is further proposed to solve the optimization problems. The simulation results convince the feasibility of the proposed approach, which can balance the two objectives and satisfy the requirements of the optimization of intake pump stations.
出处 《中南民族大学学报(自然科学版)》 CAS 2013年第3期72-76,共5页 Journal of South-Central University for Nationalities:Natural Science Edition
基金 江苏省自然科学基金资助项目(SBK201121841) 湖北省自然科学基金资助项目(2011CDB277)
关键词 泵站 优化调度 峰谷电价 运行时间 粒子群优化 pump station optimal scheduling time-of-use tariff accumulative running time particle swarm optimization
作者简介 唐玉玲(1975-),女,讲师,研究方向:先进控制理论、能源系统优化与控制、控制工程与控制设备等,E-mail:tylzsr@163.com.
  • 相关文献

参考文献17

  • 1Xia X, Zhang J. Control systems and energy efficiency from the POET perspective [ C]//IFAC. Conference on Control Methodologies and Technology for Energy Efficiency. Vilamoura: IFAC, 2010.
  • 2Zhang J, Xia X, Alexander D. Demand side optimal strategy for voluntary load shedding [ C ] //lASTED. The second IASTED Africa conference on power and energy system. Gaborone : IASTED ,2008.
  • 3Bar6n B, Von Ltieken C, Sotelo A. Multi-objective pumpscheduling optimisation using evolutionary strategies [ J ]. Advances in Engineering Software. 2005, 36( 1 ) : 39-47.
  • 4Beckwith S P,Wong K P. A genetic algorithm approach for electric pump scheduling in water supply systems [ C ] // IEEE. International Conference on Evolutionary Computation. Perth:IEEE, 1996.
  • 5Moreno M A, Planells P, C6rcoles J I, et al. Development of a new methodology to obtain the characteristic pump curves that minimize the total cost at pumping stations [ J ]. Biosystems Egineering, 2009, 102( 1 ) : 95-105.
  • 6Moreno S A, Carri6n P A, Planells P, et al. Measurement and improvement of the energy efficiency at pumping stations [J]. Biosystems Engineering, 2007, 98(4): 479-486.
  • 7Lertpalangsuntia N, Chana C W, Masonb R, et al. A toolset for construction of hybrid intelligent forecasting systems: application for water demand prediction [ J ]. Artificial Intelligence in Engineering, 1999, 13 (1): 21-42.
  • 8Zhou S L, McMahan T A, Walton A, et al. Forecasting operational demand for an urban water supply zone [ J ]. Journal of Hydrology, 2002, 259 : 189-202.
  • 9专祥涛,李明龙.基于移峰填谷的排水泵站优化调度研究[J].武汉大学学报(工学版),2011,44(6):773-778. 被引量:15
  • 10Zhang He, Xia Xiaohua, Zhang Jiangfeng. Optimal sizing and operation of pumping systems to achieve energy efficiency and load shifting [ J ]. Electric Power Systems Research, 2012, 86(5) : 41-50.

二级参考文献38

共引文献423

同被引文献14

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部