期刊文献+

基于YOLOv3-R的滚装电梯异常载客检测系统设计

Design of Abnormal Passenger Detection System for Roll on/Roll off Elevators Based on YOLOv3-R
在线阅读 下载PDF
导出
摘要 滚装电梯因高效运载而被广泛应用,但其异常载客行为存在安全隐患。传统检测依赖重量传感器、视频监控、人工巡检,存在实时性差、误检率高、成本大等问题。基于网络通信与服务器架构的AI检测,因受传输延迟与带宽限制的影响,存在检测延迟、数据丢失等风险。提出YOLOv3-R异常载客检测系统,采用高分辨率工业相机采集数据,并结合智能预处理与深度学习识别超载、闯入、违规运输等行为。结果表明,YOLOv3-R在精度、误检率、推理速度方面优于传统方法,可实现高效、低延迟的实时监测,为电梯安全管理提供智能检测方案。 Roll on/roll off elevators are widely applied due to their efficient transportation capabilities,yet abnormal passenger behaviors in these elevators pose safety hazards.Traditional detection methods rely on weight sensors,video surveillance,and manual inspections,which suffer from issues such as poor real-time performance,high false detection rates,and significant costs.AI-based detection utilizing network communication and server architectures is affected by transmission delays and bandwidth limitations,leading to risks of detection delays and data loss.The YOLOv3-R abnormal passenger detection system is proposed,which employs high-resolution industrial cameras for data collection and integrates intelligent preprocessing with deep learning to identify behaviors such as overloading,intrusion,and illegal transportation.The results demonstrate that YOLOv3-R outperforms traditional methods in terms of accuracy,false detection rate,and inference speed,enabling efficient,low-latency real-time monitoring and providing an intelligent detection solution for elevator safety management.
作者 张德萌 刘闯 ZHANG Demeng;LIU Chuang(Dingtao District People's Hospital,Heze,Shandong 274199,China)
机构地区 定陶区人民医院
出处 《自动化应用》 2025年第16期31-33,共3页 Automation Application
关键词 滚装电梯 异常载客检测 YOLOv3-R 深度学习 目标检测 roll on/roll off elevators abnormal passenger detection YOLOv3-R deep learning object detection
作者简介 张德萌,男,1987年生,助理工程师,研究方向为电梯控制与智能化。
  • 相关文献

参考文献2

二级参考文献20

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部