期刊文献+

基于模态分解和RIME-CNN-BiLSTM-AM的风速预测方法

Wind Speed Prediction Based on Modal Decomposition and RIME-CNN-BiLSTM-AM
在线阅读 下载PDF
导出
摘要 作为一种清洁的可再生能源,风能在缓解日益严重的能源危机方面充当着重要作用。然而,风速的波动性和随机性给电力系统的稳定运行带来了严峻的挑战。针对该问题,提出一种基于自适应噪声完备集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)与霜冰优化算法(rime optimization algorithm,RIME)-卷积神经网络(convolutional neural network,CNN)-双向长短期记忆网络(bidirectional long short-term memory network,BiLSTM)-注意力机制(attention mechanism,AM)的短期风速预测组合模型CEEMDAN-RIME-CNN-BiLSTM-AM。首先,对初始风速序列采用CEEMDAN算法,得到一系列较平稳的子模态,以降低风速序列的波动性;然后,采用RIME霜冰优化算法优化CNN超参数,建立CNN-RIME模型,对风速数据进行自适应提取和挖掘;接着,采用BiLSTM-AM模型对处理后的数据进行预测;最后,将各子序列的预测结果叠加,得到最终预测结果。以某地实际风速数据集进行对比试验,该模型在单步与多步预测中均展现出良好的预测性能,可以为制定调度计划提供参考,以最大程度地提高能源利用率和供电。 Serving as a clean and renewable energy source,wind energy plays a significant role in mitigating the increasingly severe energy crisis.However,the fluctuation and randomness of wind speed pose severe challenges to the stable operation of power systems.To address this issue,a combined short-term wind speed forecasting model named CEEMDAN-RIME-CNN-BiLSTM-AM was proposed,which was based on complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN),rime optimization algorithm(RIME),convolutional neural network(CNN),bidirectional long short-term memory network(BiLSTM),and attention mechanism(AM).Initially,the CEEMDAN algorithm was applied to the original wind speed series to obtain a series of relatively stable submodes,thereby reducing the volatility of the wind speed series.Subsequently,the CNN hyperparameters were optimized using the RIME algorithm to establish the CNN-RIME model for adaptive extraction and mining of wind speed data.Then,the BiLSTM-AM model was employed to forecast the processed data.Finally,the forecasting results of each sub-series were superimposed to obtain the final forecasting result.A comparative experiment was conducted using an actual wind speed dataset from a certain location.The proposed model demonstrates good forecasting performance in both single-step and multi-step forecasting,providing a reference for scheduling plans to maximize energy utilization and power supply.
作者 朱婷 颜七笙 ZHU Ting;YAN Qi-sheng(College of Economic and Management,East China University of Technology,Nanchang 330000,China;College of Science,East China University of Technology,Nanchang 330013,China)
出处 《科学技术与工程》 北大核心 2025年第20期8514-8525,共12页 Science Technology and Engineering
基金 国家自然科学基金(71961001)。
关键词 风速预测 自适应噪声完备集合经验模态分解(CEEMDAN) 霜冰优化算法(RIME) 卷积神经网络(CNN) 双向长短期记忆网络(BiLSTM) 注意力机制(AM) wind speed prediction complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN) rime optimization algorithm(RIME) convolutional neural network(CNN) bidirectional long short-term memory network(BiLSTM) attention mechanism(AM)
作者简介 第一作者:朱婷(2001-),女,汉族,安徽阜阳人,硕士研究生。研究方向:智能计算及应用。E-mail:1668986880@qq.com;通信作者:颜七笙(1976-),男,汉族,江西临川人,博士,教授。研究方向:智能计算及应用。E-mail:yanqs93@126.com。
  • 相关文献

参考文献17

二级参考文献260

共引文献285

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部