期刊文献+

算子矩阵的(R_(1))性质与(R)性质

Property(R_(1))and Property(R)for Operator Matrices
在线阅读 下载PDF
导出
摘要 (R)性质是Weyl型定理的最新变形,突出反映了线性算子的特征值与升标的关系.作者通过运用主对角线上给定算子谱子集的特点研究算子矩阵,给出了2×2上三角算子矩阵满足(R_(1))性质与(R)性质的充要条件. Property(R)which is the latest variations of Weyl type theorem reflects the relation between eigenvalues and ascents of linear operators prominently.By using the characteristics of the spectral subset of the given operators on the main diagonal to study the operator matrix,the necessary and sufficient conditions for 2×2 upper triangular operator matrices holding property(R1)and property(R)are established.
作者 孙晨辉 曹小红 SUN Chenhui;CAO Xiaohong(School of Mathematics and Statistics,Weinan Normal University,Weinan 714099,Shaanxi,China;School of Mathematics and Statistics,Shaanxi Normal University,Xi'an 710119,China)
出处 《数学年刊(A辑)》 北大核心 2025年第1期65-74,共10页 Chinese Annals of Mathematics
基金 2022年度渭南市科技局科技计划项目(No.2022ZDYFJH-11) 2024年渭南师范学院服务渭南市基础教育高质量发展教育科学研究专项课题(No.SWNZ2420) 渭南师范学院2021年人才项目(No.2021RC16)的资助。
关键词 (R_(1))性质 (R)性质 算子矩阵 Property(R_(1)) Property(R) Spectrum Operator matrices
作者简介 孙晨辉,E-mail:sunchenhui1986@163.com;通信作者:曹小红,E-mail:xiaohongcao@snnu.edu.cn。
  • 相关文献

参考文献2

二级参考文献24

  • 1Du, H. K., Pan, J.: Perturbation of spectrums of 2 × 2 operator matrices. Proc. Amer. Math. Soc., 121,761-766 (1994).
  • 2Han, J. K., Lee, H. Y., Lee, W. Y.: Invertible completions of 2 × 2 upper triangular operator matrices.Proc. Amer. Math. Soc., 128, 119-123 (2000).
  • 3Han, Y. M., Djordjevi6, S. VI: a-Weyl's theorem for operator matrices. Proc. Amer. Math, Soc., 130,715-722 (2001).
  • 4Lee, W. Y.: Weyl spectra of operator matrices. Proc, Amer. Math. Soc., 129, 131-138 (2000).
  • 5Lee, W. Y.: Weyl's theorem for operator matrices. Intege. Equ. Oper. Theory, 32, 319-331 (1998).
  • 6Weyl, H.: Uber beschrankte quadratische Formen, deren Differenz vollstetig ist. Rend. Circ. Mat. Palermo,27, 373-392 (1909).
  • 7Djordjevic, SI V.,Djordjevic, D. S.: Weyl's theorems: continuity of the spectrum and quasihyponormal operators. Acta Sci. Math. (Szeged), 64, 259-269 (1998).
  • 8Rakocevic, V.: Operators obeying a-Weyl's theorem. Rev. Roumaine Math. Pures Appl., 34(10), 915-919(1989).
  • 9Taylor, A. E.: Theorems on ascent, descent, nullity and defect of linear operators. Math. Ann., 168, 18-49(1966).
  • 10Aiena P., Pefia P., Variation on Weyl's theorem, J. Math. Anal. Appl., 2006, 324(1): 566-579.

共引文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部