期刊文献+

3×3上三角算子矩阵的Weyl型定理 被引量:11

Weyl's Theorem for 3×3 Upper Triangular Operator Matrices
原文传递
导出
摘要 设A∈B(H1),B∈B(H2),C∈B(H3)为给定的三个算子,用M(D,E,F)= 表示一个作用在H1(?)H2(?)H3上的3×3算子矩阵.本文首先给出存在算子D∈B(H2,H1),E∈B(H3,H1),F∈B(H3,H2),使得M(D,E,F)为上半Fredholm算子(下半Fredholm算子)的充要条件.同时研究了3×3算子矩阵 M(D,E,F)的Weyl定理,α-Weyl定理,Browder定理和α-Browder定理. When A∈B(H1),B∈B(H2),C∈B(H3) are given, we denote by M(D, E, F) an operator, acting on the Hilbert spaceH1 ⊕ H2 ⊕H3 of the form M(D,E,F) =( (A00 DB0 EFC) ) In this paper, we give the necessary and sufficient condition for M(D, E, F) to be upper semi-Fredholm (lower semi-Fredholm) operator for some D ∈ B(H2,H1), E∈ B(H3,H1), F ∈ B(H3,H2). Weyl type theorems are liable to fail for 2×2 operator matrices. In this paper, we also explore how Weyl's theorem, Browder's theorem, a-Weyl's theorem and a-Browder's theorem survive for 3 × 3 upper triangular OPerator matrices on the Hilbert space.
作者 曹小红
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2006年第3期529-538,共10页 Acta Mathematica Sinica:Chinese Series
基金 陕西师范大学校级青年基金资助项目
关键词 BROWDER定理 WEYL定理 Browder's theorem Weyl's theorem spectrum
作者简介 曹小红,E-mail:xiaohongcao@snnu.edu.cn
  • 相关文献

参考文献1

二级参考文献9

  • 1Du, H. K., Pan, J.: Perturbation of spectrums of 2 × 2 operator matrices. Proc. Amer. Math. Soc., 121,761-766 (1994).
  • 2Han, J. K., Lee, H. Y., Lee, W. Y.: Invertible completions of 2 × 2 upper triangular operator matrices.Proc. Amer. Math. Soc., 128, 119-123 (2000).
  • 3Han, Y. M., Djordjevi6, S. VI: a-Weyl's theorem for operator matrices. Proc. Amer. Math, Soc., 130,715-722 (2001).
  • 4Lee, W. Y.: Weyl spectra of operator matrices. Proc, Amer. Math. Soc., 129, 131-138 (2000).
  • 5Lee, W. Y.: Weyl's theorem for operator matrices. Intege. Equ. Oper. Theory, 32, 319-331 (1998).
  • 6Weyl, H.: Uber beschrankte quadratische Formen, deren Differenz vollstetig ist. Rend. Circ. Mat. Palermo,27, 373-392 (1909).
  • 7Djordjevic, SI V.,Djordjevic, D. S.: Weyl's theorems: continuity of the spectrum and quasihyponormal operators. Acta Sci. Math. (Szeged), 64, 259-269 (1998).
  • 8Rakocevic, V.: Operators obeying a-Weyl's theorem. Rev. Roumaine Math. Pures Appl., 34(10), 915-919(1989).
  • 9Taylor, A. E.: Theorems on ascent, descent, nullity and defect of linear operators. Math. Ann., 168, 18-49(1966).

共引文献38

同被引文献68

  • 1吴秀峰,黄俊杰,阿拉坦仓.三阶上三角算子矩阵点谱,连续谱和剩余谱的扰动[J].数学学报(中文版),2015,58(3):423-430. 被引量:5
  • 2Xiao Hong CAO,Mao Zheng GUO,Bin MENG.Semi-Fredholm Spectrum and Weyl's Theorem for Operator Matrices[J].Acta Mathematica Sinica,English Series,2006,22(1):169-178. 被引量:39
  • 3侯国林,阿拉坦仓,黄俊杰.Hilbert空间线性二次最优控制问题中的一个算子的可逆性[J].数学学报(中文版),2007,50(2):473-480. 被引量:6
  • 4CONWEY J B.A Course in Functional Analysis[M].Second edition.New York,Heidelberg,Berlin,Tokyo,1985.
  • 5HONG-KE DU,JIN PAN.Perturbation of spectrums of 2×2 operator matrices,Proc[J].Amer Math Soc,1994,121:761-776.
  • 6HAN J K,LEE H Y,LEE W Y.Invertible completions of 2×2 operator matrices[J].Proc Amer Math Soc,2000,128:119-123.
  • 7DJORDJEVI(C) D S,Perturbations spectra of operator matrices[J].J Operator Theroy,2002,48,467-486.
  • 8ZHANG H Y,DU H K.Browder spectra of upper-triangular operator matrices[J].J Math Anal Appl,2006,323:700-707.
  • 9CAO X,GUO M,MENG B.Weyl's theorem for upper triangular operator matrices[J].Linear Algebra and its Applications,2005,402:61-73.
  • 10DJORDJEVI S V,HAN Y M,Anote on Weyl's theorem for operator matrices[J].Proc Amer Math Soc,2003,131:2543-2547.

引证文献11

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部