摘要
设A∈B(H1),B∈B(H2),C∈B(H3)为给定的三个算子,用M(D,E,F)= 表示一个作用在H1(?)H2(?)H3上的3×3算子矩阵.本文首先给出存在算子D∈B(H2,H1),E∈B(H3,H1),F∈B(H3,H2),使得M(D,E,F)为上半Fredholm算子(下半Fredholm算子)的充要条件.同时研究了3×3算子矩阵 M(D,E,F)的Weyl定理,α-Weyl定理,Browder定理和α-Browder定理.
When A∈B(H1),B∈B(H2),C∈B(H3) are given, we denote by M(D, E, F) an operator, acting on the Hilbert spaceH1 ⊕ H2 ⊕H3 of the form M(D,E,F) =( (A00 DB0 EFC) ) In this paper, we give the necessary and sufficient condition for M(D, E, F) to be upper semi-Fredholm (lower semi-Fredholm) operator for some D ∈ B(H2,H1), E∈ B(H3,H1), F ∈ B(H3,H2). Weyl type theorems are liable to fail for 2×2 operator matrices. In this paper, we also explore how Weyl's theorem, Browder's theorem, a-Weyl's theorem and a-Browder's theorem survive for 3 × 3 upper triangular OPerator matrices on the Hilbert space.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2006年第3期529-538,共10页
Acta Mathematica Sinica:Chinese Series
基金
陕西师范大学校级青年基金资助项目
作者简介
曹小红,E-mail:xiaohongcao@snnu.edu.cn