期刊文献+

上下文关系编码器与孪生神经网络在工业缺陷检测中的应用

The Application of Contextual Relation Encoder and Siamese Neural Network in Industrial Defect Detection
在线阅读 下载PDF
导出
摘要 工业产品在现代社会中无处不在,但在工业生产过程中不可避免地会出现一些产品质量问题,针对工业场景下收集的样本图像类间数据量不均衡、总体样本量较小等问题,引入上下文关系编码器(CRE)与孪生神经网络(SNN)结合的CRE-SNN工业缺陷分类网络。该网络不需要对样本数据进行标注,经过循环迭代生成标注的特征图像,能够解决标注耗时的问题;同时,该网络使用对特征对比的方式进行分类,可以应对工业场景下样本数量不足的问题。训练出的网络能够应用于多种不同的数据集和仅有几张样本图像的极端情况,具有良好的泛化性和鲁棒性。在3个不同工业数据集上的实验表明,与其他经典算法相比,所损网络的准确率、平均准确率(mAP)等指标得到了一定的提升。 Industrial products are ubiquitous in modern society,but some product quality problems inevitably occur in the industrial production process.To address the problems of unbalanced data volume between classes of sample images collected in industrial scenarios and small overall sample size,this paper introduces a CRE-SNN industrial defect classification network combining contextual relation encoder(CRE)and siamese neural network(SNN),which does not require labeling of sample data and generates labeled feature images through cyclic iteration.The model can solve the problem of time-consuming labeling.Meanwhile,the network adopts a feature contrast-based classification approach,which can address the challenge of insufficient sample quantities in industrial scenarios.The trained network can be applied to many different datasets and extreme cases with only a few sample images,and has good generalization and robustness.Experiments on three different industrial datasets show that the accuracy and mAP of the proposed network are improved compared with other classical algorithms.
作者 张卉婧 李敏波 ZHANG Huijing;LI Minbo(School of Software,Fudan University,Shanghai 200433,China)
机构地区 复旦大学
出处 《微型电脑应用》 2025年第4期287-290,共4页 Microcomputer Applications
关键词 缺陷检测 上下文关系编码器 连体神经网络 小样本学习 defect detection contextual relation encoder siamese neural network few-shot learning
作者简介 张卉婧(1998-),女,硕士研究生,研究方向为大数据与数据科学。;通信作者:李敏波(1970-),男,博士,副教授,研究方向为大数据与数据科学。
  • 相关文献

参考文献5

二级参考文献80

  • 1王孙安,郭子龙.混沌免疫模糊聚类算法在图像边缘检测中的应用[J].西安交通大学学报,2004,38(7):712-716. 被引量:9
  • 2SEETHALAKSHMI R.,SREERANJANI T.R.,BALACHANDAR T.,Abnikant Singh,Markandey Singh,Ritwaj Ratan,Sarvesh Kumar.Optical Character Recognition for printed Tamil text using Unicode[J].Journal of Zhejiang University-Science A(Applied Physics & Engineering),2005,6(11):1297-1305. 被引量:1
  • 3薄华,马缚龙,焦李成.图像纹理的灰度共生矩阵计算问题的分析[J].电子学报,2006,34(1):155-158. 被引量:208
  • 4欧阳奇,张兴兰,陈登福,张涛,肖建平.高温连铸坯表面缺陷的机器视觉无损检测[J].重庆大学学报(自然科学版),2007,30(11):27-31. 被引量:17
  • 5Bengio Y. learning Deep Architectures for Al. Foundations andTrends in Machine Learning, 2009 , 2(1): 1-127.
  • 6Hinton G E,SaIakhut(Jinov R R. Reducing the Dimensionality ofData with Neural Networks. Science, 2006, 313(5786) : 504-507.
  • 7Bengio Y, Delalleau 0. On the Expressive Power of Deep Archilec-tures // Proc of the 22nd International Conference on Algorithmiclearning Theory. Ksp[M], Finland,2011: 18-36.
  • 8Yoshua B, l^eCun Y. Scaling Learning Algorithms towards Al.Cambridge,USA : MIT Press, 2007.
  • 9Dahl G E, Yu d, Deng L, el al. Context-Dependent Pre-trainedDeep Neural Networks for Large-Vocabulary Speech Recognition.IEEE Trans on Audio, Speech and Language Processing, 2012,20(1):30-42.
  • 10Hinton G,Deng L, Yu D, et al. Deep Neural Networks for AcousticModeling in Speech Recognition : The Shared Views of FourResearch Groups. IEEE Signal Processing Magazine, 2012, 29(6) : 82-97.

共引文献417

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部