摘要
针对RRT^(*)算法在路径规划中面临搜索效率不高、易于陷入局部最优等问题,提出一种结合强化学习的Q-RRT^(*)算法。该算法将Q-Learning算法和RRT^(*)算法相融合,首先引入转角偏向策略增强路径搜索时的导向作用、减少无效节点的生成,提升算法的搜索效率;其次通过动R搜索算法动态地调整搜索半径,进一步优化路径的质量和冗余节点的产生;最后对生成的路径使用三次B样条插值法和冗余节点删除法进一步优化路径质量。在二维和三维环境下的仿真实验结果表明,改进后的Q-RRT^(*)算法和RRT、RRT^(*)和RL-RRT算法相比,路径规划时长平均快39.7%,迭代次数平均减低27.9%,路径长度平均缩短16.3%。
In order to solve the problems of low search efficiency and tendency to fall into local optimum in RRT^(*) path planning,a Q-RRT^(*) algorithm combined with reinforcement learning was proposed,which fused the Q-Learning algorithm and the RRT^(*) algorithm.Firstly,the corner bias strategy was introduced to enhance the guiding effect of path search,reduce the generation of invalid nodes,and improve the search efficiency of the algorithm.Secondly,the search radius was dynamically adjusted by the dynamic R search algorithm to further optimize the quality of the path and the generation of redundant nodes.Finally the cubic B-spline interpolation method and the redundant node deletion method were used to further optimize the path quality of the generated path.Simulation results in 2D and 3D environments show that the improved Q-RRT^(*) algorithm is 39.7%faster on average,27.9%less iteration and 16.3%shorter in path length than RRT,RRT^(*) and RL-RRT algorithms.
作者
张艳珠
侯亢钧
陈勇
李婷雪
李妍
ZHANG Yanzhu;HOU Kangjun;CHEN Yong;LI Tingxue;LI Yan(Shenyang Ligong University,Shenyang 110159,China)
出处
《沈阳理工大学学报》
2025年第4期1-6,12,共7页
Journal of Shenyang Ligong University
基金
辽宁省教育厅高等学校基本科研项目(LJKZ0245)。
作者简介
张艳珠(1971-),女,教授,博士。