摘要
光滑多目标规划问题是近几年研究的热点问题,本研究利用G-ρ不变凸函数,定义了f_(i)-v_(i) g_(i) (·)不变凸、不变拟凸和不变伪凸函数。并利用新函数研究了不变凸分式规划的对偶问题,得到了几个对偶条件,把G-不变凸整式规划的相关结论推广到分式规划,拓展G-不变凸函数研究范围。
Nonsmooth multi-objective programming is a hot topic in recent years.By G-ρ invex functions,a class of f_(i)-v_(i) g_(i) (·)invex,quasi invex and pseudo invex functions were defined.The duality conditions of invex fractional programming were researched,and some dual conditions were obtained,many important conclusions on G invex integral programming were generalized to fractional programming,the research scope of G invex functions were extended.
作者
王晨阳
李向有
黄紫橙
龙佳柔
白亚荣
WANG Chenyang;LI Xiangyou;HUANG Zicheng;LONG Jiarou;BAI Yarong(College of Mathematics and Computer science of Yan’an University,Shanxi Yan’an 716000;College of Mathematics and Physics,Xinjiang Agricultural University,Urumqi,Xinjiang 830052,China)
出处
《井冈山大学学报(自然科学版)》
2025年第1期22-27,共6页
Journal of Jinggangshan University (Natural Science)
基金
国家自然科学基金项目(11961072)
延安大学2022年省级大学生创新创业训练项目(S202210719121)。
关键词
G-ρ函数
分式规划
对偶条件
多目标
G-ρfunctions
fractional programming
duality condition
multi-objective
作者简介
通信作者:李向有(1976-),男,陕西延安人,副教授,硕士,主要从事最优化理论与方法研究,E-mail:yadxlxy@163.com。