摘要
利用局部Lipschitz函数,定义了一类G-ρ不变凸函数、G-ρ不变拟凸函数、G-ρ不变伪凸函数和不完全Lagrange函数鞍点,研究了涉及此类函数的半无限多目标规划问题,得到了不完全Lagrange函数鞍点的充分性条件和必要性条件。从而在新的更弱凸性下推广了鞍点条件。
By using local Lipschitz function,a class of new G-ρinvex functions,G-ρquasi invex function,G-ρpseudo invex function and incomplete lagrange function saddle point were defined,semi-infinite multi-objective programming problems involving the new defined functions were researched,sufficient conditions and necessary conditions of incomplete lagrange function saddle point were obtained,saddle point conditions were generalized under the new weaker convexity.
作者
李向有
LI Xiangyou(College of Mathematics and Computer Science,Yan’an University,Yan’an 716000,China)
出处
《延安大学学报(自然科学版)》
2022年第1期86-90,共5页
Journal of Yan'an University:Natural Science Edition
基金
国家自然科学基金项目(61763046)
延安大学校级科研计划项目(YDY2020-24)。
关键词
G-ρ不变凸函数
多目标
半无限
鞍点
G-ρinvex functions
multi-objective
semi-infinite
saddle-point
作者简介
李向有(1976—),男,陕西延安人,延安大学副教授。