期刊文献+

基于多模态生理信号特征融合的情绪识别方法研究 被引量:1

Research on emotion recognition methods based on multi-modal physiological signal feature fusion
原文传递
导出
摘要 情绪分类识别是情感计算的关键领域,脑电等生理信号可精准反映情绪且难以伪装。现阶段,情绪识别在单模态信号特征提取和多模态信号整合方面存在局限。本研究收集了高兴、悲伤、恐惧情绪下的脑电(EEG)、肌电(EMG)、皮电(EDA)信号,采用基于特征权重融合的方法进行特种融合并用支持向量机(SVM)和极限学习机(ELM)进行分类。结果表明,融合权重为EEG 0.7、EMG 0.15、EDA 0.15时分类最准确,准确率SVM为80.19%,ELM为82.48%,比单独脑电信号分别提升了5.81%和2.95%。此研究为多模态生理信号情绪分类识别提供了方法支持。 Emotion classification and recognition is a crucial area in emotional computing.Physiological signals,such as electroencephalogram(EEG),provide an accurate reflection of emotions and are difficult to disguise.However,emotion recognition still faces challenges in single-modal signal feature extraction and multi-modal signal integration.This study collected EEG,electromyogram(EMG),and electrodermal activity(EDA)signals from participants under three emotional states:happiness,sadness,and fear.A feature-weighted fusion method was applied for integrating the signals,and both support vector machine(SVM)and extreme learning machine(ELM)were used for classification.The results showed that the classification accuracy was highest when the fusion weights were set to EEG 0.7,EMG 0.15,and EDA 0.15,achieving accuracy rates of 80.19%and 82.48%for SVM and ELM,respectively.These rates represented an improvement of 5.81%and 2.95%compared to using EEG alone.This study offers methodological support for emotion classification and recognition using multi-modal physiological signals.
作者 张志雯 于乃功 边琰 闫金涵 ZHANG Zhiwen;YU Naigong;BIAN Yan;YAN Jinhan(School of Information Science and Technology,Beijing University of Technology,Beijing 100124,P.R.China;Beijing Key Laboratory of Computational Intelligence and Intelligent Systems,Beijing 100124,P.R.China;School of Automation and Electrical Engineering,Tianjin Polytechnic Normal University,Tianjin 300222,P.R.China;Tianjin Key Laboratory of Information Sensing and Intelligent Control,Tianjin 300222,P.R.China)
出处 《生物医学工程学杂志》 北大核心 2025年第1期17-23,共7页 Journal of Biomedical Engineering
基金 国家自然科学基金项目(62076014)。
关键词 情绪 多模态 特征融合 脑电 肌电 皮电 Emotion Multi-modality Feature fusion Electroencephalogram Electromyogram Electrodermal activity
作者简介 通信作者:于乃功,Email:yunaigong@bjut.edu.cn。
  • 相关文献

参考文献13

二级参考文献51

  • 1陈继华,李岚,钱坤喜.基于多生理信号的情绪初步识别[J].生物医学工程研究,2006,25(3):141-146. 被引量:22
  • 2郑希付.不同情绪模式图片的和词语刺激启动的时间效应[J].心理学报,2004,36(5):545-549. 被引量:52
  • 3李雪冰,罗跃嘉.情绪和记忆的相互作用[J].心理科学进展,2007,15(1):3-7. 被引量:36
  • 4王振宏,郭德俊,游旭群,高培霞.身体攻击行为学生自主神经活动的情绪唤醒特点[J].心理学报,2007,39(2):277-284. 被引量:25
  • 5Picard.情感计算[M].罗森林,译.北京:北京理工大学出版社,2005:129-142.
  • 6http://affect.media.mit.edu/index.php [EB/OL].
  • 7Ashish Kapoor, Winslow Burleson, Rosalind W Picard. Automatic prediction of frustration [J]. International Journal of Human-Computer Studies,2007,65(8):724-736.
  • 8Burleson W.Affective learning companions: Strategies for empathetic agents with real-time multimodal affective sensing to foster meta-cognitive and meta-affective approaches to learning, motivation,and perseverance[D]. USA:MIT,2006.
  • 9Picard R W, Vyzas E,Healey J.Toward machine emotional intelligence: Analysis of affective physiological state[J].IEEE Transactions Pattern Analysis and Machine Intelligence,2001,23(10): 1175-1191.
  • 10AHaag S Goronzy, Schaich P, William J. Emotion recognition using bio-sensors:First step towards an automatic system[C].Affective Dialogue Systems, Tutorial and Research Workshop, 2004:36-48.

共引文献120

同被引文献22

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部