期刊文献+

模糊支持向量机情感状态识别的研究 被引量:1

Study of fuzzy support vector machine emotional state recognition
在线阅读 下载PDF
导出
摘要 针对已有的情感生理参数样本类内聚合度低、不同状态较难区分的特点,提出了一种改进的模糊支持向量机识别方法。模糊隶属度函数采用高斯分布形式,高斯分布的参数分别由同类样本数据形成的最小超球体半径和样本之间的紧密程度决定。该方法计算样本模糊隶属度时,不仅考虑样本与类中心的距离关系,还要考虑样本与样本之间的关系。实验显示改进的模糊支持向量机方法识别性能得到提高。 Due to low similarity for the same emotional state parameters and difficult to distinguish between different emotional states,this paper proposed an improved fuzzy support vector machine recognition method.Fuzzy membership function took the form of the Gaussian function,determined Gaussian function parameters by the radius of the same state sample data smallest hyper sphere and tightness of sample data.Determined fuzzy membership value of sample by not only considered the distance between the sample classes and the center of the sample the class,but also considered the relationship betwwen samples.Experiments show that the improved fuzzy support vector machine recognition performance is improved.
出处 《计算机应用研究》 CSCD 北大核心 2011年第3期831-832,837,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(60572143)
关键词 情感状态识别 模糊支持向量机 情感生理参数 emotional state recognition fuzzy support vector machine emotion physiological parameter
作者简介 徐鲁强(1968-),男,四川德阳人,副教授,博士研究生,主要研究方向为智能信息系统(luqiangxu@yahoo.com.cn); 刘静霞(1972-),女,四川成都人,讲师,主要研究方向为计算机应用.
  • 相关文献

参考文献12

  • 1薛雨丽,毛峡,郭叶,吕善伟.人机交互中的人脸表情识别研究进展[J].中国图象图形学报,2009,14(5):764-772. 被引量:50
  • 2赵腊生,张强,魏小鹏.语音情感识别研究进展[J].计算机应用研究,2009,26(2):428-432. 被引量:21
  • 3PICARD R W,VYZAS E,HEALEY J.Toward machine emotional intelligence:analysis of affective physiological state[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2001,23(10):1175-1191.
  • 4KIM K H,BANG SW,KIM S R.Emotion recognition system using short term monitoring of physiological signals[J] ,Medical and Biological Engineering and Computing,2004,42(3):419-427.
  • 5GU Yuan,LIM T S,JUAN W K,et al.A GMM based 2-stage architecture for multi-subject emotion recognition using physiological responses[C] //Proc of the 1 st Augmented Human International Conference.New York:ACM Press,2010:825-828.
  • 6LIN Chun-fu,WANG Sheng-de.Fuzzy support vector machines[J].IEEE Trans on Neural Networks,2002,13(2):464-471.
  • 7KATAGIRI S,ABE S.Incremental training of support vector machines using hyper spheres[J].Pattern Recognition Letters,2006,27(13):1495-1507.
  • 8WAGNER J,KIM J,ANDER E.From physiological signals to emotions:implementing and comparing selected methods for feature extraction and classification[C] //Pros of IEEE International Conference on Multimedia & Expo.2005:940-943.
  • 9杨瑞请,刘光远.基于BPSO的四种生理信号的情感状态识别[J].计算机科学,2008,35(3):137-138. 被引量:8
  • 10牛晓伟,刘光远.用于生理信号情感识别的自适应遗传算法[J].计算机工程与设计,2008,29(14):3726-3728. 被引量:4

二级参考文献110

共引文献83

同被引文献24

引证文献1

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部