摘要
发动机运行速度快,低压涡轮轴断裂程度过大可使双转子涡扇在高速路失稳,引发严重故障。为解决该问题,设计基于SIFT尺度空间的低压涡轮轴断裂自动检测方法:构建SIFT尺度空间,依涡轮轴应力特征向量取值定义奇异值估算条件以估计应力,匹配断裂特征点得出断裂时间与区域,实现自动检测。实验表明,该方法能在低压涡轮轴损坏裂度达5mm前检测到断裂行为,不会影响发动机稳定运行。
The engine runs at high speed,and if the low-pressure turbine shaft breaks too severely,it can cause the twin-fan turbofan to become unstable at high speeds,leading to serious malfunctions.To solve this problem,a method for automatically detecting low-pressure turbine shaft fracture based on SIFT scale space is designed:a SIFT scale space is constructed,and the singular value estimation condition is defined based on the stress feature vector value to estimate the stress,the fracture feature points are matched to obtain the fracture time and region,and automatic detection is achieved.The experimental results show that the method can detect the fracture behavior before the low-pressure turbine shaft damage reaches 5mm,without affecting the stable operation of the engine.
作者
周波
ZHOU Bo(The Electrification Company Of China First Highway Engineering Co.,Ltd.,Beijing 100102,China)
关键词
发动机
低压涡轮
轴断裂检测
SIFT尺度空间
应力特征
奇异值估算
特征点
损坏裂度
engine
low pressure turbine
shaft fracture detection
SIFT scale space
stress characteristics
singular value estimation
feature points
damage crack
作者简介
周波(1988-),男,山西忻州人,中交一公局电气化工程有限公司安监部部长,中级工程师,研究方向:机电工程。