期刊文献+

航班延误传播模型研究

Study of the propagation model for flight delays
在线阅读 下载PDF
导出
摘要 为研究航班延误传播规律,利用真实航班运行数据构建机场航班网络。基于易感-感染-免疫(Susceptible-Infected-Recovered,SIR)模型建立航班延误传播模型,选用梯度下降法求解模型参数;以最大连通子图比例(S)作为网络抗毁性指标,使用选择性攻击和随机攻击策略分析抗毁性;将航班延误传播模型与长短期记忆(Long Short-Term Memory,LSTM)网络预测模型、马尔科夫模型进行延误预测比较,引用历史数据进行实例分析。结果表明:机场航班网络平均路径长度为2.387,聚类系数为0.58,度分布呈双幂率分布,具有小世界和无标度特性;随机攻击删除节点累计300个,S>0.5,网络抗毁性强,选择性攻击删除节点比例15%~20%,S=0,网络抗毁性差;航班延误传播模型平均绝对百分比误差(Mean Absolute Percentage Error,MAPE)分别与LSTM预测模型、马尔科夫模型相差4.41百分点、50.98百分点,具有更高精度。所提出的模型为航班延误提供了预测工具,为航空公司、机场等单位制定有效延误缓解措施提供参考。 To delve deeper into the complexities of flight delay propagation,we constructed an airport flight network using real flight operational data.This paper presents a flight delay propagation model based on the Susceptible-Infected-Recovered(SIR) model,and we utilized the gradient descent method to solve the model parameters.In the airport flight network,we utilized the maximum connected subgraph ratio(S) as the network's invulnerability index,and we analyzed its invulnerability through selective attack and random attack strategies.Furthermore,we compared the flight delay propagation model with the Long Short Term Memory(LSTM) prediction model and the Markov model for delay prediction,citing historical data for instance analysis.The results reveal that the average path length of the airport flight network is 2.387,with a clustering coefficient of 0.58.The degree distribution of the airport flight network follows a double power law distribution.The airport flight network demonstrates the characteristics of small-world and scale-free networks.In the invulnerability analysis of the airport flight network,a random attack that deletes a total of 300 nodes results in S>0.5,indicating strong invulnerability of the airport flight network.When the proportion of selective attack deletion nodes ranges from 15% to 20%,the value of S is 0,indicating poor invulnerability of the airport flight network.Additionally,the Mean Absolute Percentage Error(MAPE) for the flight delay propagation model is 16.7%,while the MAPE values for the LSTM and Markov models are 21.11% and 67.68%,respectively.The MAPE value of the flight delay propagation model differs by 4.41 percentage point from the LSTM prediction model and by 50.98 percentage point from the Markov model,indicating its higher accuracy.As such,the flight delay propagation model serves as a reliable prediction tool for flight delays,offering valuable insights for airlines and airports to formulate effective delay mitigation measures.
作者 梁文娟 连蓉蓉 LIANG Wenjuan;LIAN Rongrong(College of Safety Science and Engineering,Civil Aviation University of China,Tianjin 300300,China)
出处 《安全与环境学报》 CAS CSCD 北大核心 2024年第10期3839-3846,共8页 Journal of Safety and Environment
基金 民航安全能力建设项目(ASSA2023/19)。
关键词 安全工程 复杂网络 抗毁性 易感-感染-免疫(SIR)模型 马尔科夫模型 safety engineering complex network invulnerability Susceptible-Infected-Recovered(SIR)model Markov model
作者简介 梁文娟,副研究员,硕士,从事民航安全信息分析与应用、突发事件应急等研究,lwjcm@163.com。
  • 相关文献

参考文献18

二级参考文献129

  • 1郭文炯,白明英.中国城市航空运输职能等级及航空联系特征的实证研究[J].人文地理,1999,14(1):31-35. 被引量:38
  • 2吴俊,谭跃进.复杂网络抗毁性测度研究[J].系统工程学报,2005,20(2):128-131. 被引量:120
  • 3谭跃进,吴俊,邓宏钟,朱大智.复杂网络抗毁性研究综述[J].系统工程,2006,24(10):1-5. 被引量:63
  • 4刘宏鲲,周涛.中国城市航空网络的实证研究与分析[J].物理学报,2007,56(1):106-112. 被引量:144
  • 5Ying JIANG, Yicheng YE, Qin WANG. Study on weighting function of weighted time series forecasting model in the safety system[ A]. 2011 Asia-Pacific Pow- er and Energy Engineering Conference, APPEEC 2011 March 26 - March 28 [ C] ,Wuhan,China,2010.
  • 6Long D, Lee D, Johnson J, et al. Modeling Air Traffic Management Technologies With a Queuing Network Model of National Airspace System [R]. NASA/CR-1999-208988,1999.
  • 7Gilbo E P. Optimizing airport capacity utilization in air traffic flow management subject to constraints at arrival and departure fixes [J]. IEEE Trans on Control Systems Technol, 1997, 5(5): 490-503.
  • 8Bertsimas D, Odoni A. Critical Survey of Optimization Models for Tactical and Strategic Aspects of Air Traffic Flow Management [R]. NASA/CR-97-206409, 1997.
  • 9Vranas P, Bertsimas D, Odoni A. The multi-airport ground-holding problem in air traffic control [J]. Operations Research, 1998, 42(2): 249-261.
  • 10Thompson S D. Terminal Area Separation Standards:Historical Development, Current Standards and Processes for Change [R]. MIT Lincoln Laboratory Report ATC-258,1997.

共引文献243

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部