期刊文献+

考虑可再生能源协调出力的电动汽车充电定价方法 被引量:2

CHARGING PRICING METHOD OF ELECTIC VEHICLE CONSIDERING COORDIRATIED OUTPUT OF RENEWABLE ENERGY
在线阅读 下载PDF
导出
摘要 在一个配电网和城市交通网耦合框架中,提出一种电动汽车充电定价方法。建立以社会总成本最小为目标的电动汽车充电服务费的双层优化模型,模型上层为在含风电的配电网中求解充电服务费(Charging Service Fees, CSF)的二阶锥问题;下层为一个遵循用户均衡(User Equilibrium, UE)原则的交通分配问题。该模型考虑了风电输出和OD交通流的不确定性,建立基于深度强化学习的求解框架,对随机双层问题进行解耦和近似求解。以5节点系统和某城市交通-电力耦合网为例,验证了该模型的有效性。 A charging pricing method for electric vehicles is proposed in a coupling framework of distribution network and urban transportation network.In this paper,a two-level optimization model for charging service charge of electric vehicles was established with the objective of minimizing the total social cost.The upper layer of the model was to solve the second-order cone problem of charging service fees(CSF)in the distribution network with wind power,and the lower level was a traffic assignment problem following the user equilibrium(UE)principle.Considering the uncertainty of wind power output and OD traffic flow,a solution framework based on deep reinforcement learning was established to decouple and approximate solve the stochastic bilevel problem.The effectiveness of the model is verified by a 5-bus system and a city traffic power coupling network.
作者 陆斯悦 及洪泉 张禄 徐蕙 王培祎 Lu Siyue;Ji Hongquan;Zhang Lu;Xu Hui;Wang Peiyi(State Grid Beijing Electric Power Company,Beijing 100075,China)
出处 《计算机应用与软件》 北大核心 2024年第9期383-390,397,共9页 Computer Applications and Software
基金 国家电网公司科技项目(52020119000C)。
关键词 深度强化学习 配电网 交通网 电动汽车充电费用 交通用户均衡 Deep reinforcement learning Distribution network Transportation network Electric vehicle charging fees Traffic user equilibrium
作者简介 陆斯悦,工程师,主研领域:电力系统分析;及洪泉,高工;张禄,高工;徐蕙,工程师;王培祎,助工。
  • 相关文献

参考文献9

二级参考文献60

共引文献328

同被引文献21

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部