期刊文献+

应用于空中平台主动防御作战轨迹预测过程的状态估计方法研究

Research on State Estimation Method Applied to Trajectory Prediction of Air Platforms Active Defense Operations
在线阅读 下载PDF
导出
摘要 从主动防御的实际作战需求入手,分析轨迹预测不同方法的优缺点及使用场景,分析空中平台主动防御作战场景相较于目前主要研究的其他飞行器轨迹预测场景的区别,针对该场景下轨迹预测对象特殊的攻击意图和运动规律提出一种基于扩展卡尔曼滤波的状态估计方案。基于仿真软件模拟了攻击弹以比例导引攻击载机的过程,以满足比例导引系数不变的条件建立观测模型,采用扩展卡尔曼滤波为非线性的模型进行线性化仿真,观测到不同时刻攻击弹的运动状态,并以此进行短时间的轨迹预测。仿真结果表明,该模型在主动防御作战场景下能显著减小状态估计误差。 Starting with the actual operational requirements of active defense,this paper analyzes the advantages,disadvantages,and usage scenarios of different trajectory prediction methods,also analyzes the differences between the active defense combat scenarios of air platforms and other aircraft trajectory prediction scenarios that are currently mainly studied.A state estimation scheme based on extended Kalman filtering is proposed for the special attack intent and motion law of the trajectory prediction object in this scenario.It simulates the process of the attack missile guided with proportional guidance law attacking aircraft based on simulation software,to establish an observation model under conditions of constant proportional guidance coefficient,and performs linearization simulation using Kalman filter nonlinear model.The motion states of the attack missile at different times are observed and the short-term trajectory prediction is performed.The simulation results show that the model can significantly reduce state estimation errors in the active defense combat scenario.
作者 吕明远 吴震 乔要宾 Lu Mingyuan;Wu Zhen;Qiao Yaobin(China Airborne Missile Academy,Luoyang 471009,China;National Key Laboratory of Air-based Information Perception and Fusion,Luoyang 471009,China)
出处 《航空兵器》 CSCD 北大核心 2024年第4期41-48,共8页 Aero Weaponry
关键词 空空导弹 主动防御 三体对抗 轨迹预测 状态估计 扩展卡尔曼滤波 air to air missile active defense three-player conflict trajectory prediction state estimation extended Kalman filter
作者简介 吕明远(1997-),男,河南洛阳人,硕士研究生;通信作者:吴震(1971-),男,浙江宁波人,研究员。
  • 相关文献

参考文献22

二级参考文献232

共引文献195

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部