期刊文献+

基于PSO-VMD和EWT的异步电机滑动轴承故障诊断

Fault Diagnosis of the Sliding Bearings for Induction Motors Based on PSO-VMD and EWT
在线阅读 下载PDF
导出
摘要 针对大型电机滑动轴承故障诊断困难的问题,提出基于频域积分、变分模态分解(Variational Mode Decomposition,VMD)和经验小波分解(Empirical Wavelet Transform,EWT)相结合的滑动轴承故障诊断方法。以实际故障电机轴承加速度信号为例,首先通过频域积分得到位移信号,分析位移信号的时域和频域特征可初步诊断出电机可能存在碰摩故障和不对中故障,但轴心轨迹图混乱,无法给出肯定结论;然后将经粒子群算法(Particle Swarm Optimization,PSO)优化的变分模态分解和小波阈值去噪相结合对原始位移信号进行去噪,通过经验小波变换得到位移信号的主要频率成分并进行重构,重新绘制轴心轨迹,分析表明经提纯得到的轴心轨迹清晰、特征明显,可以由此判断出电机存在碰摩-轴承不对中耦合故障。最后将该方法与聚类经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)等方法对比可以得出,采用该方法可以得到更清晰的轴心轨迹图,有助于实现电机滑动轴承的故障诊断。 Aiming at the difficulty of the fault diagnosis of sliding bearings in induction motors,a fault diagnosis meth-od of sliding bearings based on frequency-domain integration,variable mode decomposition(VMD),and empirical wavelet transform(EWT)is proposed.The fault diagnosis of an actual sliding bearing of a motor is taken as an example.Firstly,the displacement signal is obtained through frequency-domain integration.Through analyzing the time-domain and frequency-domain characteristics of the displacement signal,the two potential faults,the friction fault and the misalignment fault,are diagnosed.However,the shaft orbit diagram is too chaotic to provide any affirmative conclusion.Then,the VMD algorithm optimized by the particle swarm optimization(PSO)and the wavelet threshold denoising method are applied to remove the noise in the original displacement signal.The principal frequency components of the displacement signal obtained by the EWT algorithm are obtained and reconstructed,and the shaft orbit is redrawn.The analysis show that the purified shaft or-bits is sharp and can provide evident characteristics.It can be concluded according to the shaft orbit that the motor has the friction-bearing misalignment coupled fault.Finally,compared with the ensemble empirical mode decomposition(EEMD)and some other methods,the proposed method can obtain sharp shaft orbit diagrams,improve the shaft orbit,and is benefi-cial for the fault diagnosis of the sliding bearings in induction motors.
作者 彭川 吝伶艳 雷志鹏 田慕琴 侯茜茜 宋建成 PENG Chuan;LIN Lingyan;LEI Zhipeng;TIAN Muqin;HOU Xixi;SONG Jiancheng(College of Electrical and Power Engineering,Taiyuan University of Technology,Taiyuan 030024,China)
出处 《噪声与振动控制》 CSCD 北大核心 2024年第5期140-147,209,共9页 Noise and Vibration Control
基金 山西省重点研发计划资助项目(202003D111008) 国家自然科学基金资助项目(51977137) 山西省重点研发计划资助项目(202102010101005)。
关键词 故障诊断 滑动轴承 频域积分 变分模态分解(VMD) 经验小波分解(EWT) 轴心轨迹 fault diagnosis sliding bearing frequency domain integration VMD EWT shaft orbit
作者简介 彭川(1999-),男,湖北省孝感市人,硕士研究生,专业方向为电机与电器。E-mail:1940442093@qq.com;通信作者:雷志鹏,男,硕士生导师,专业方向为高电压与绝缘、矿用智能电器。E-mail:leizhipeng@163.com。
  • 相关文献

参考文献11

二级参考文献133

共引文献251

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部