期刊文献+

Machine learning for prediction of retained austenite fraction and optimization of processing in quenched and partitioned steels

原文传递
导出
摘要 The metastable retained austenite(RA)plays a significant role in the excellent mechanical performance of quenching and partitioning(Q&P)steels,while the volume fraction of RA(V_(RA))is challengeable to directly predict due to the complicated relationships between the chemical composition and process(like quenching temperature(Qr)).A Gaussian process regression model in machine learning was developed to predict V_(RA),and the model accuracy was further improved by introducing a metallurgical parameter of martensite fraction(fo)to accurately predict V_(RA) in Q&P steels.The developed machine learning model combined with Bayesian global optimization can serve as another selection strategy for the quenching temperature,and this strategy is very effcient as it found the"optimum"Qr with the maximum V_(RA) using only seven consecutive iterations.The benchmark experiment also reveals that the developed machine learning model predicts V_(RA) more accurately than the popular constrained carbon equilibrium thermodynamic model,even better than a thermo-kinetic quenching-partitioning-tempering-local equilibrium model.
出处 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2024年第8期2002-2013,共12页 钢铁研究学报(英文版)
基金 The authors acknowledge financial support from the National Natural Science Foundation of China(Grant Nos.51771114 and 51371117).
作者简介 Xun-wei Zuo,jeepling@sjtu.edu.cn。
  • 相关文献

参考文献1

二级参考文献62

  • 1Y.E Zheng, X.N. Gu, E Witte, Mater. Sci. Eng. R Rep. 77 (2014) 1-34.
  • 2X.N. Gu, Y.E Zheng, Front China 4 (2010) 111-115.
  • 3E Witte, N. Hort, C. Vogt, S. Cohen, K.U. Kainer, R. WiUumeit, E Feyerabend, Curt. Opin. Solid State Mater. Sci. 12 (2008) 63-72.
  • 4M.E Staiger, A.M. Pietak, J. Huadmai, G. Dias, Biomaterials 27 (2006) 1728-1734.
  • 5X. Gu, Y. Zheng, Y. Cheng, S. Zhong, T. Xi, Biomaterials 30 (2009) 484-498.
  • 6T. Kraus, S.E Fischerauer, A.C. H~nzi, P.J. Uggowitzer, J.E L6ffler, A.M. Weinberg, Acta Biomater, 8 (2012) 1230-1238.
  • 7P.K. Bowen, J. Drelich, R.E. Buxbaum, R.M. Rajachar, J. Goldman, Emerg. Mater. Res. 1 (2012) 237-255.
  • 8H. Hermawan, A. Purnama, D. Dube, J. Couet, D. Mantovani, Acta Biomater. 6 (2010) 1852-1860.
  • 9T.. Huang, J. Cheng, Y.E Zheng, Mater. Sci. Eng. C Mater. Biol. Appl. 35 (2014) 43-53.
  • 10W.J. Lin, D.Y. Zhang, G. Zhang, H.T. Sun, H.P. Qi, L.P. Chen, Z.Q. Liu, R.L. Gao, W. Zheng, Mater. Des. 91 (2016) 72-79.

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部