期刊文献+

Emerging direct current triboelectric nanogenerator for high-entropy mechanical energy harvesting

原文传递
导出
摘要 In the era of the Internet of Things(IoT),the provision of sustainable power to distributed,mobile,and low-power-consumption electronic devices is a critical challenge.To overcome this challenge,the triboelectric nanogenerator(TENG),a highly efficient high-entropy mechanical energy harvesting device,was developed in 2012.This device enables the direct conversion of irregular and low-frequency mechanical energy into pulsed alternating current(AC)signals.However,the incompatibility of most electronic devices with AC signals necessitates rectifier circuits or generators that deliver direct current(DC)signals.In recent years,DC-TENGs have undergone extensive development,achieving significant milestones in various application fields while also facing crucial challenges that require solutions.In this review,three categories of DC-TENG devices with distinct operating mechanisms are comprehensively explored:multiphase coupling,mechanical rectification,and air breakdown.Their typical structures and working mechanisms are thoroughly discussed,and specific output performance limitations,along with corresponding optimization strategies,are identified.Furthermore,the applications of DC-TENGs in various scenarios are summarized.Finally,the challenges faced by DC-TENGs and potential solutions are analyzed to guide further advancements in this technology.
出处 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第5期1297-1316,共20页 中国科学(技术科学英文版)
基金 supported by the Postdoctoral Science Foundation(Grant No.2023M730419) the Ministry of Education“Chunhui Plan”Cooperative Scientific Research Project(Grant No.HZKY20220206) the Scientific and Technology Research Program of Chongqing Municipal Education Commission(Grant Nos.KJQN202100522,KJQN202200514 and KJQN202100514) the Natural Science Foundation of Chongqing(Grant No.cstc2021jcyj-msxmX0746) the Dr.“Through Train”Scientific Research Program(Grant No.CSTB2022BSXM-JCX0091)。
作者简介 contributed equally/Corresponding authors:CHEN Jie,email:chenjie@cqnu.edu.cn;contributed equally:GUO RuiLong;Corresponding authors:GUO HengYu,email:physghy@cqu.edu.cn。
  • 相关文献

参考文献24

二级参考文献90

  • 1Xuguang Sun,Jianhai Sun,Tong Li,Shuaikang Zheng,Chunkai Wang,Wenshuo Tan,Jingong Zhang,Chang Liu,Tianjun Ma,Zhimei Qi,Chunxiu Liu,Ning Xue.Flexible Tactile Electronic Skin Sensor with 3D Force Detection Based on Porous CNTs/PDMS Nanocomposites[J].Nano-Micro Letters,2019,11(4):35-48. 被引量:23
  • 2Wang, Z. L.; Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242-246.
  • 3Wang, X. D.; Song, J. H.; Liu, J.; Wang, Z. L. Direct-current nanogenerator driven by ultrasonic waves. Science 2007, 316,102-105.
  • 4Zhang, J.; Wu, Z.; Jia, Y. M.; Kan, J. W.; Cheng, G. M. Piezoelectric bimorph cantilever for vibration-producing?hydrogen. Sensors 2013, 13. 367-374.
  • 5Park, K. I.; Jeong, C. K.; Ryu, I; Hwang, G. T.; Lee, K. J. Flexible and large-area nanocomposite generator based on lead zircon ate titanate particles and carbon nanotubes. Adv. Eng. Mater., in press, DOl: 10.1 002/aenm.201300458.
  • 6Bai, X. L.; Wen, Y. M.; Yang, J.; Li, P.; Qiu, J.; Zhu, Y. A magnetoelectric energy harvester with the magnetic coupling to enhance the output performance. J. Appl. Phys. 2012, 111, 07A938.
  • 7Mitcheson, P. D.; Miao, P.; Stark, B. H.; Yeatman, E. M.; Holmes, A. S.; Green, T. C. MEMS electrostatic micropower generator for low frequency operation. Sens. Actuators, A 2004,115,523-529.
  • 8Wang, L.; Yuan, F. G. Vibration energy harvesting by magnetostrictive material. Smart Mater. Struct. 2008, 17, 045009.
  • 9Wang, Z. L. Self-powered nanosensors and nanosystems. Adv. Mater. 2011, 24, 279-284.
  • 10Wang, Z. L. Self-powering nanotech. Sci. Am. 2008, 298, 82-87.

共引文献123

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部