期刊文献+

基于RIME-VMD-SSA-LSTM法研究非生态因素影响的来水预报模型 被引量:3

Research on Inflow Forecasting Model of Non-Ecological Factors Based on RIME-VMD-SSA-LSTM Method
在线阅读 下载PDF
导出
摘要 对于上下游电站群落较多的来水预测问题,使用传统水文模型预测水库来水流量误差较大,流量测点信息包含大量非线性影响因素。以鲁布革电站汛期来水数据为例,采用RIME-VMD-SSA-LSTM组合算法研究上游具有较强非生态因素干扰的水库短期来水流量预测模型。结果显示,基于该算法提出的流量预测模型,4项评价指标(RMSE=8.8743、MAE=6.3193、MAPE=3.5335%、R2=0.98631)较好,最大预测误差控制在50%以内,相对于LSTM法及VMD-LSTM算法,在有较强非生态因素干扰下,可更精确地预测短期来水情况。 For the water inflow prediction problem with a large number of upstream and downstream power plant communities,using traditional hydrological models to predict the inflow flow of reservoirs has a significant error.The flow measurement point information contains a large number of nonlinear influencing factors.Taking the flood season inflow data of Lubuge Power Station as an example,RIME-VMD-SSA-LSTM combination algorithm is used to study the short-term inflow prediction model of reservoirs with strong non ecological interference in the upstream.The results show that the traffic prediction model proposed based on this algorithm has good performance in four evaluation indicators(RMSE=8.8743,MAE=6.3193,MAPE=3.5335%,R2=0.98631),and the maximum prediction error is controlled within 50%.Compared to LSTM and VMD-LSTM algorithms,it can more accurately predict short-term water inflow under strong non ecological interference.
作者 段宇 黄君 杨关友 洪国仁 段娟 DUAN Yu;HUANG Jun;YANG Guanyou;HONG Guoren;DUAN Juan(Southern Power Grid Peak Shaving Frequency Modulation Power Generation Co.,Ltd.,Lubuge Hydroelectric PowerPlant,Qujing655800,China;Kunming University of Science and Technology,Kunming 650093,China)
出处 《云南水力发电》 2024年第5期44-50,共7页 Yunnan Water Power
基金 云南省基础研究项目(202201AUO70114)。
关键词 深度学习 短期来水预测 VMD-LSTM 预测精度 deep learning short term water inflow prediction VMD-LSTM prediction accuracy
作者简介 段宇(1989-),男,云南曲靖人,工程师,主要从事发电运行工作。
  • 相关文献

参考文献6

二级参考文献73

共引文献46

同被引文献30

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部