期刊文献+

Space-time estimates of the 3D bipolar compressible Navier-Stokes-Poisson system with unequal viscosities

原文传递
导出
摘要 The space-time behavior for the Cauchy problem of the 3D compressible bipolar Navier-Stokes-Poisson(BNSP)system with unequal viscosities is given.The space-time estimate of the electric field▽φ=▽(-△)^(-1)(n-Zρ)is the most important in deducing generalized Huygens’principle for the BNSP system and it requires proving that the space-time estimate of n-Zρonly contains the diffusion wave due to the singularity of the operator▽(-△)^(-1).A suitable linear combination of unknowns reformulating the original system into two small subsystems for the special case(with equal viscosities)in Wu and Wang(2017)is crucial for both linear analysis and nonlinear estimates,especially for the space-time estimate of▽φ.However,the benefits from this reformulation will no longer exist in general cases.Here,we study an 8×8 Green’s matrix directly.More importantly,each entry in Green’s matrix contains wave operators in the low-frequency part,which will generally produce Huygens’wave;as a result,one cannot achieve the space-time estimate of n-Zρthat only contains the diffusion wave as before.We overcome this difficulty by taking a more detailed spectral analysis and developing new estimates arising from subtle cancellations in Green’s function.
出处 《Science China Mathematics》 SCIE CSCD 2024年第5期1059-1084,共26页 中国科学(数学)(英文版)
基金 supported by National Natural Science Foundation of China(Grant No.11971100) supported by National Natural Science Foundation of China(Grant Nos.12271357,12161141004,and 11831011) Natural Science Foundation of Shanghai(Grant No.22ZR1402300) Shanghai Science and Technology Innovation Action Plan(Grant No.21JC1403600)。
作者简介 Zhigang Wu,Email:zgwu@dhu.edu.cn;Corresponding author:Weike Wang,wkwang@sjtu.edu.cn。
  • 相关文献

参考文献6

二级参考文献40

  • 1Degond P. Mathematical modelling of microelectronics semiconductor devices//Some Current Topics on Nonlinear Conservation Laws. AMS/IP Stud Adv Math, 15. Providence, RI: Amer Math Soc, 2000: 77-110.
  • 2Degond P, Jin S, Liu J. Mach-number uniform asymptotic-preserving gauge schemes for compressible flows. Bull Inst Math Acad Sin (N S), 2007, 2(4): 851-892.
  • 3Donatelli D. Local and global existence for the coupled Navier-Stokes-Poisson problem. Quart Appl Math, 2003, 61:345-361.
  • 4Donatelli D, Marcati P. A quasineutral type limit for the Navier-Stokes-Poisson system with large data. Nonlinearity, 2008, 21(1): 135-148.
  • 5Duan R -J, Liu H, Ukai S, Yang T. Optimal L^p - L^q convergence rates for the compressible Navier-Stokes equations with potential force. J Differ Equ, 2007, 238(5): 737- 758.
  • 6Ducomet B, Feireisl E, Petzeltova H, Skraba I S. Global in time weak solution for compressible barotropic self-gravitating fluids. Discrete Continous Dynamical System, 2004, 11(1): 113-130.
  • 7Ducomet B, Zlotnik A. Stabilization and stability for the spherically symmetric Navier-Stokes-Poisson system. Appl Math Lett, 2005, 18(10): 1190-1198.
  • 8Hao C, Li H. Global Existence for compressible Navier-Stokes-Poisson equations in three and higher di- mensions. J Differ Equ, 2009, 246:4791 -4812.
  • 9Hoff D, Zumbrun K. Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow. Indiana Univ Math J, 1995, 44:603-676.
  • 10Ju Q, Li F, Li H -L. The quasineutral limit of Navier-Stokes-Poisson system with heat conductivity and general initial data. J Differ Equ, 2009, 247:203- 224.

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部