期刊文献+

LARGE TIME BEHAVIORS OF THE ISENTROPIC BIPOLAR COMPRESSIBLE NAVIER-STOKES-POISSON SYSTEM 被引量:6

LARGE TIME BEHAVIORS OF THE ISENTROPIC BIPOLAR COMPRESSIBLE NAVIER-STOKES-POISSON SYSTEM
在线阅读 下载PDF
导出
摘要 The isentropic bipolar compressible Navier-Stokes-Poisson (BNSP) system is investigated in R3 in the present paper. The optimal time decay rate of global strong solution is established. When the regular initial data belong to the Sobolev space H l(R3) ∩ B˙ s 1,1 (R3) with l ≥ 4 and s ∈ (0, 1], it is shown that the momenta of the charged particles decay at the optimal rate (1+t) 1 4 s 2 in L2 -norm, which is slower than the rate (1+t) 3 4 s 2 for the compressible Navier-Stokes (NS) equations [14]. In particular, a new phenomenon on the charge transport is observed. The time decay rate of total density and momentum was both (1 + t) 3 4 due to the cancellation effect from the interplay interaction of the charged particles. The isentropic bipolar compressible Navier-Stokes-Poisson (BNSP) system is investigated in R3 in the present paper. The optimal time decay rate of global strong solution is established. When the regular initial data belong to the Sobolev space H l(R3) ∩ B˙ s 1,1 (R3) with l ≥ 4 and s ∈ (0, 1], it is shown that the momenta of the charged particles decay at the optimal rate (1+t) 1 4 s 2 in L2 -norm, which is slower than the rate (1+t) 3 4 s 2 for the compressible Navier-Stokes (NS) equations [14]. In particular, a new phenomenon on the charge transport is observed. The time decay rate of total density and momentum was both (1 + t) 3 4 due to the cancellation effect from the interplay interaction of the charged particles.
作者 邹晨
出处 《Acta Mathematica Scientia》 SCIE CSCD 2011年第5期1725-1740,共16页 数学物理学报(B辑英文版)
基金 supported by NSFC (10872004) National Basic Research Program of China (2010CB731500) the China Ministry of Education (200800010013)
关键词 bipolar Navier-Stokes-Poisson system optimal time convergence rate total momentum bipolar Navier-Stokes-Poisson system optimal time convergence rate total momentum
  • 相关文献

参考文献1

二级参考文献17

  • 1Degond P. Mathematical modelling of microelectronics semiconductor devices//Some Current Topics on Nonlinear Conservation Laws. AMS/IP Stud Adv Math, 15. Providence, RI: Amer Math Soc, 2000: 77-110.
  • 2Degond P, Jin S, Liu J. Mach-number uniform asymptotic-preserving gauge schemes for compressible flows. Bull Inst Math Acad Sin (N S), 2007, 2(4): 851-892.
  • 3Donatelli D. Local and global existence for the coupled Navier-Stokes-Poisson problem. Quart Appl Math, 2003, 61:345-361.
  • 4Donatelli D, Marcati P. A quasineutral type limit for the Navier-Stokes-Poisson system with large data. Nonlinearity, 2008, 21(1): 135-148.
  • 5Duan R -J, Liu H, Ukai S, Yang T. Optimal L^p - L^q convergence rates for the compressible Navier-Stokes equations with potential force. J Differ Equ, 2007, 238(5): 737- 758.
  • 6Ducomet B, Feireisl E, Petzeltova H, Skraba I S. Global in time weak solution for compressible barotropic self-gravitating fluids. Discrete Continous Dynamical System, 2004, 11(1): 113-130.
  • 7Ducomet B, Zlotnik A. Stabilization and stability for the spherically symmetric Navier-Stokes-Poisson system. Appl Math Lett, 2005, 18(10): 1190-1198.
  • 8Hao C, Li H. Global Existence for compressible Navier-Stokes-Poisson equations in three and higher di- mensions. J Differ Equ, 2009, 246:4791 -4812.
  • 9Hoff D, Zumbrun K. Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow. Indiana Univ Math J, 1995, 44:603-676.
  • 10Ju Q, Li F, Li H -L. The quasineutral limit of Navier-Stokes-Poisson system with heat conductivity and general initial data. J Differ Equ, 2009, 247:203- 224.

共引文献14

同被引文献9

引证文献6

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部