期刊文献+

重介分选密度智能控制系统在济二煤矿选煤厂的应用 被引量:3

Application of dense medium density intelligent control system in the Coal Preparation Plant of Jier Coal Mine
在线阅读 下载PDF
导出
摘要 阐述了济宁二号煤矿选煤厂针对重介分选密度控制问题,以数字化建设为基础,依托人工智能技术进行了智能化建设的探索。基于完善的生产传感器,采集原煤灰分、入洗煤量、磁性物含量、精煤灰分等生产数据入库保存,作为智能控制系统的数据基础。基于盘古大模型和优化求解技术构建重介分选密度设定值的智能推荐系统,并将推荐的分选密度自动下发到PLC系统执行,形成完整的生产闭环。生产实践表明,该系统控制得到的精煤产品灰分稳定性更高,精煤理论产率相比人工控制提升0.334%。 Dense medium cyclone is an important equipment in coal preparation.The control effect of dense medium density determines the quality and yield of clean coal products.Based on the foundations of digitization and automation,Jier coal mine coal preparation plant has carried out experimental research and application of intelligent control on dense medium density,relying on the rapidly developing artificial intelligence technology.Based on the well-established production sensors,raw coal ash,amount of coal washed,magnetic substance content and clean coal ash et al are collected and stored in database,to be used as the data basis by intelligent control system.Dense medium density intelligent control system is constructed based on Pangu large model and optimal solving technique,and the recommended density is send to the PLC system automatically forming a complete production closed loop.Production practice shows that application of the intelligent control system can obtain more stable clean coal ash and 0.33%higher clean coal yield.
作者 朱绍文 李新祥 戴长官 朱新奇 徐鹏展 ZHU Shao-wen;LI Xin-xiang;DAI Zhang-guan;ZHU Xin-qi;XU Peng-zhan(No.2 Mine of Yanzhou Mining Group,Jining,Shandong 272072,China;General Technology Research Institute,Shandong Energy Group,Jinan,Shandong 250000,China;Huawei Technologies Co.,Ltd.,Shenzhen,Guangdong 518116,China)
出处 《煤炭加工与综合利用》 CAS 2024年第2期1-6,共6页 Coal Processing & Comprehensive Utilization
关键词 选煤厂 重介质旋流器 人工智能 大模型 分选密度控制 coal preparation plant dense medium cyclone artificial intelligence large model medium density control
作者简介 朱绍文(1973-),男,山东济宁人,2007年毕业于山东科技大学计算机科学与技术专业,兖矿能源济宁二号煤矿选煤中心总工程师,高级工程师。
  • 相关文献

参考文献10

二级参考文献58

共引文献36

同被引文献36

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部