期刊文献+

涉警网络舆情主题发现及情感分析研究 被引量:1

Research on the Theme Discovery and Emotion Analysis of Police-related Internet Public Opinion
在线阅读 下载PDF
导出
摘要 [目的/意义]研究涉警网络舆情主题特点及网民情感变化,可以为构建良好的警民关系和警察形象提供参考,具有重要的社会意义和实际价值。[方法/过程]获取微博平台涉警网络舆情数据,使用LDA主题模型及TF-IDF算法对网络舆情数据进行主题发现研究,基于Word2Vec模型构建涉警网络舆情领域情感词典,进而对网民情感进行分析。[局限]在案例选取及分析方面不够全面。[结果/结论]通过LDA主题模型及TF-IDF算法可以使主题划分更为明显,基于领域情感词典的情感分析也较为准确,更好地反映出舆情传播过程中热点话题及网民情感的变化。 [Objective/Significance]Studying the theme characteristics of police-related network public opinion and the emotional changes of netizens can provide reference for building a good relationship between the police and the people and the police image,which has important social significance and practical value.[Methods/Processes]The online public opinion data related to police in Weibo platform were obtained,and the topic discovery of online public opinion data was studied by using LDA theme model and TF-IDF algorithm.Based on Word2Vec model,an emotional dictionary in the field of online public opinion related to police was constructed,and then the feelings of netizens were analyzed.[Limitations]The case selection and analysis are not comprehensive enough.[Results/Conclusions]The LDA theme model and TF-IDF algorithm can make the theme division more obvious,and the emotion analysis based on the domain emotion dictionary is more accurate,which better reflects the hot topics and the emotional changes of netizens in the process of public opinion dissemination.
作者 管雨翔 王娟 张鹏 GUAN Yuxiang;WANG Juan;ZHANG Peng(Research Center for Network Public Opinion Governance of CPPU,Langfang 065000,China)
出处 《情报工程》 2023年第6期105-116,共12页 Technology Intelligence Engineering
基金 国家社会科学基金项目“基于大数据的网络舆情全息建模与决策情报感知研究”(20BXW074)。
关键词 涉警舆情 主题发现 情感分析 LDA主题模型 Police-related Internet Public Opinion Theme Discovery Emotional Analysis LDA Theme Model
作者简介 管雨翔(1998-),硕士研究生,研究方向为网络舆情;王娟(1979-),博士,副教授,研究方向为数据警务技术,E-mail:wangjuan@cppu.edu.cn;张鹏(1981-),博士,副教授,研究方向为网络危机管理。
  • 相关文献

参考文献21

二级参考文献272

共引文献376

同被引文献31

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部