期刊文献+

基于DDS-PLL技术的MEMS陀螺仪闭环驱动系统设计

Design of MEMS gyroscope closed-loop drive system based on DDS-PLL technology
在线阅读 下载PDF
导出
摘要 为了提高科氏振动陀螺仪驱动模态的控制精度与稳定性,设计了基于DDS-PLL技术的MEMS陀螺仪闭环驱动系统。利用基于直接数字频率合成器(DDS)算法的数字锁相环实现对陀螺谐振频率和相位的跟踪,采用数字自动增益模块(AGC)实现驱动幅值的稳定控制。实验结果表明,通过DDS算法实现的闭环驱动系统具有更高的控制精度,驱动幅值变化的均方差缩小到0.0011 mV,幅度稳定性为183 ppm,谐振频率变化的均方差缩减至0.07 Hz,频率稳定性为3.48 ppm,陀螺仪驱动模态的幅值和频率控制精度得到了提高。 In order to improve the control accuracy and stability of the driving mode of Coriolis vibration gyroscope,a closed-loop driving system of MEMS gyroscope based on DDS-PLL is designed.The digital phase-locked loop(PLL)based on direct digital frequency synthesizer(DDS)is used to track the resonant frequency and phase of gyro,and the digital automatic gain control(AGC)is used to control the driving amplitude stably.The experimental results show that the closed-loop driving system based on DDS algorithm can achieve higher control accuracy.The mean square error of the driving amplitude change is reduced to 0.0011 mV,the amplitude stability is 183 ppm,the mean square error of resonant frequency change is reduced to 0.07 Hz,and the frequency stability is 3.48 ppm.The precision of amplitude and frequency control of gyroscope driving mode is improved.
作者 姜波 郑雄斌 周怡 周同 苏岩 JIANG Bo;ZHENG Xiongbin;ZHOU Yi;ZHOU Tong;SU Yan(Nanjing University of Science and Technology,School of Mechanical Engineering,Nanjing 210094,China)
出处 《中国惯性技术学报》 EI CSCD 北大核心 2024年第1期71-78,共8页 Journal of Chinese Inertial Technology
基金 国家自然科学基金(62271262)。
关键词 陀螺仪 锁相环 均方差 频率稳定性 gyroscopes phase locked loop mean square error frequency stability
作者简介 姜波(1988-),男,副教授,从事MEMS陀螺仪研究。
  • 相关文献

参考文献6

二级参考文献33

  • 1王存超,苏岩,王寿荣.硅微振动陀螺仪驱动器自激驱动研究[J].传感技术学报,2006,19(2):364-366. 被引量:14
  • 2李志鹏,郭勇,沈军.基于DDS技术实现信号发生器[J].微计算机信息,2007,23(19):175-177. 被引量:30
  • 3Dong L, Avanesian D. Drive-mode control for vibrational MEMS gyroscopes. IEEE Trans Industrial Electron, 2009, 56(4): 956.
  • 4Sharma A, Zaman M F, Ayazi F. A 104-dB dynamic range transimpedance-based CMOS ASIC for tuning fork microgyro- scopes. IEEE J Solid-State Circuits, 2007, 42(8): 1790.
  • 5Aaltonen L, Halonen K. Pseudo-continuous-time teadout circuit for a 300~/s capacitive 2-axis micro-gyroscope. IEEE J Solid- State Circuits, 2009, 44(12): 3609.
  • 6Qu H, Fang D, Xie H K. A monolithic CMOS-MEMS 3-axis ac- celerometer with a low-noise, low-power dual-chopper amplifier. IEEE J Sensors, 2008, 8(9): 1511.
  • 7Mikko S, Lasse A, Teemu S. Interface and control electronics for a bulk micromachined capacitive gyroscope. Sensors and Actu- ators A: Physical, 2008, 147:183.
  • 8Cui J, Guo Z, Zhao Q. Force rebalance controller synthesis for a micromachined vibratory gyroscope based on sensitivity margin specifications. J Microelectromechan Syst, 2011, 20(6): 1382.
  • 9Yuwono S, Bae J Y, Phan A T. A current-reused low-power four- quadrant multiplier with single-ended current output. IEEE Inter- national Symposium on Circuits and Systems, 2009:2114.
  • 10Xiao Dingbang, Wu Xuezhong, Hou Zhanqiqng, et al. High- performance micromachined gyroscope with a slanted suspen- sion cantilever. Journal of Semiconductors, 2009, 30(4): 044012.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部