期刊文献+

基于硫源介导的低碳脱氮技术研究进展 被引量:6

Recent Advances in Sulfur-Based Low Carbon Nitrogen Removal Technology
在线阅读 下载PDF
导出
摘要 在“双碳”目标背景下,以异养反硝化为技术核心的传统工艺尚不能满足低碳脱氮的需求.硫源介导的自养反硝化工艺(sulfur-driven autotrophic denitrification,SDAD)因其高效脱氮且同步减碳的优势而在生物脱氮领域受到广泛关注.在国内外已有研究的基础上,本文系统梳理了SDAD及其衍生工艺的最新进展,重点关注工艺效能、功能微生物代谢机制、温室气体(N_(2)O)减排机制及其工程化应用进展.结果表明:(1)SDAD体系由自养硫氧化反硝化细菌(autotrophic sulfur-oxidizing nitrate-reducing bacteria,a-soNRB)、异养硫氧化反硝化细菌(heterotrophic sulfur-oxidizing nitrate-reducing bacteria,h-soNRB)和硫歧化细菌(sulfur disproportionating bacteria,SDB)三类微生物相互作用,共同完成脱氮.低硫化物浓度(S~(2-)浓度为6.25 mmol/L)下,a-soNRB是主要的功能菌.当硫化物浓度增加时,系统内a-soNRB与h-soNRB互作以确保高工艺效能.(2)在碳减排方面,不同运行工况主要通过影响N_(2)O还原酶(Nos)活性从而控制N_(2)O产量.总体而言,SDAD在实际应用中处理含硫废水等复合污染物方面发挥着重要作用,且相同工况下SDAD中N_(2)O的排放量仅为传统异养反硝化工艺的1/5,实现高效脱氮的同时具有显著的减碳效益,为传统生物脱氮工艺的改进提供了有效的解决方案.(3)在工程应用方面,SDAD与异养反硝化、厌氧氨氧化等工艺的耦合也进一步拓展了其应用领域,充分发挥了SDAD低碳脱氮优势的辐射效应.针对以SDAD为技术核心的污水脱氮工艺所面临的挑战,鼓励未来基于可行性和环境友好性研发适用于不同场景的多途径工艺组合(如厌氧氨氧化、短程反硝化、硫自养反硝化和与硝酸盐/亚硝酸盐依赖型厌氧甲烷氧化间的偶联),同时进一步优化基于模型的碳减排策略并预测新污染物的行为,以期为推进污水低碳脱氮领域的进一步发展提供理论依据. In the context of‘dual-carbon’goal,the traditional processes with heterotrophic denitrification as the core technology can no longer meet the demand for low-carbon nitrogen removal.Sulfur-driven autotrophic denitrification(SDAD)has received widespread attention in the field of biological nitrogen removal due to its advantages of efficient nitrogen removal and simultaneous carbon reduction.Based on existing research both domestically and internationally,this paper systematically reviews the latest advancements in SDAD and its derivative technologies,with a focus on process efficiency,microbial metabolism mechanisms,greenhouse gas(N_(2)O)emission reduction mechanisms and engineering applications,and obtained the following conclusions:(1)The SDAD system consists of three types of microorganisms,autotrophic sulfur-oxidizing nitrate-reducing bacteria(a-soNRB),heterotrophic sulfur-oxidizing nitrate-reducing bacteria(h-soNRB),heterotrophic sulfur-oxidizing nitrate-reducing bacteria(h-soNRB),and sulfur disproportionating bacteria(SDB)interacted with each other to complete nitrogen removal.At low sulfide concentration(S2−concentration is 6.25 mmol/L),a-soNRB was the main functional bacterium.When the sulfide concentration increased,a-soNRB and h-soNRB interacted with each other in the system to ensure high process efficiency.(2)In terms of carbon reduction,different operating conditions mainly affect the N_(2)O reductase(Nos)activity to control N_(2)O production.Overall,SDAD plays an important role in the treatment of sulfur-containing wastewater and othercomposite pollutants in practical applications,and the emission of N_(2)O from SDAD under the same operating conditions is only 1/5 of that of the traditional heterotrophic denitrification process,which provides an effective solution for the improvement of the traditional biological denitrification process by providing a high efficiency of denitrification and a significant reduction of carbon emissions at the same time.(3)In terms of engineering applications,the coupling of SDAD with heterotrophic denitrification,anaerobic ammonia oxidation and other processes further expands its application fields,giving full play to the radiation effect of the advantages of SDAD′s low-carbon denitrification.Finally,it concludes an outlook on the challenges faced by wastewater denitrification processes with SDAD as the core technology and encourages future research to develop multi-pathway process combinations for different scenarios based on feasibility and environmental friendliness(e.g.anaerobic ammonia oxidation,partial denitrification,sulfur-driven autotrophic denitrification and coupling with nitrate/nitrite-dependent anaerobic methane oxidation),and to further optimize model-based carbon reduction strategies and predict the behavior of novel pollutants,with a view to providing theoretical basis for advancing the field of lowcarbon denitrification of wastewater for further development.
作者 陈川 张雨 张权 樊凯丽 CHEN Chuan;ZHANG Yu;ZHANG Quan;FAN Kaili(State Key Laboratory of Urban Water Resource and Environment,School of Environment,Harbin Institute of Technology,Harbin,150090,China)
出处 《环境科学研究》 CAS CSCD 北大核心 2023年第12期2221-2234,共14页 Research of Environmental Sciences
基金 国家自然科学基金项目(No.52076063) 哈尔滨工业大学原创前沿探索基金项目(No.HIT.OCEF.2021031) 城市水资源与水环境国家重点实验室自主课题(No.2023DX04)。
关键词 低碳脱氮 自养反硝化 温室气体减排 微生物代谢机制 low carbon nitrogen removal autotrophic denitrification sulfur greenhouse gas mitigation microbial metabolism mechanisms
作者简介 陈川(1982-),男,黑龙江哈尔滨人,教授,博士,博导,主要从事水处理理论与技术研究,cchen@hit.edu.cn.
  • 相关文献

参考文献11

二级参考文献139

共引文献127

同被引文献79

引证文献6

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部