期刊文献+

基于大数据的矿山机电设备智能监控系统应用体现 被引量:3

Application Embodiment of Intelligent Monitoring System for Mining Electromechanical Equipment Based on Big Data
在线阅读 下载PDF
导出
摘要 在进入数字化时代后,矿山工作模式逐渐趋向于机械化,机电管理成为矿山开发建设的主要工作。如何在复杂环境中运用机电设备保障矿山工作人员的生命财产安全,是目前矿山企业探究的主要问题。由于矿山机电设备安全监控系统才刚开始普及,因而不管是基本理论还是应用技术都需要进一步探索分析,以充分发挥智能监控系统的积极作用。文章简介了目前矿山机电设备安全监控系统的发展现状,以及现代矿山智能监控系统的构成和基本特征,通过对比分析了传统监控系统与智能监控系统的不同,明确了基于大数据的矿山机电设备智能监控系统的应用措施,旨在为矿山开采生产管理工作提供有力支持。 After entering the digital era,the mining working mode has gradually tended to be mechanized,and electromechanical management has become the main work of mine development and construction.How to use electromechanical management to ensure the safety of life and property of mine workers in a complex environment is the main problem explored by mining enterprises at present.Because the safety monitoring system of mine electromechanical equipment has just begun to be popularized,both basic theories and applied technologies need to be further explored and analyzed to give full play to the positive role of intelligent monitoring systems.The article briefly introduces the current development status of the mine electromechanical equipment safety monitoring system,as well as the composition and basic characteristics of the modern mine intelligent monitoring system.Through comparison and analysis of the differences between the traditional monitoring system and the intelligent monitoring system,it clarifies the application measures of the mine electromechanical equipment intelligent monitoring system based on big data,aiming to provide strong support for mine mining production management.
作者 黄粒 付智博 HUANG Li;FU Zhibo(College of Coal Engineering,Shanxi Datong University,Datong 037003,China)
出处 《数字通信世界》 2023年第11期88-90,共3页 Digital Communication World
关键词 大数据 矿山 机电设备 智能监控系统 防范意识 big data mines mechanical and electrical equipment intelligent monitoring system prevention awareness
作者简介 黄粒(1996-),男,汉族,重庆人,硕士在读,研究方向为矿山机电。
  • 相关文献

参考文献5

二级参考文献32

共引文献40

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部