期刊文献+

基于生态位模型预测甘肃省内脏利什曼病传播风险 被引量:4

Predicting the transmission risk of visceral leishmaniasis in Gansu Province based on an ecological niche model
原文传递
导出
摘要 目的基于生态位模型分析并预测甘肃省内脏利什曼病传播风险,为精准防控措施的制定和疫情监测提供依据。方法自全国传染病报告信息管理系统收集甘肃省2015-2021年报告的内脏利什曼病病例,获取病例分布点经纬度坐标以及区域内19个气候变量、5个地理变量和2个社会经济变量数据。基于生态位模型,采用最大熵算法(MaxEnt)构建内脏利什曼病传播风险预测模型,利用受试者工作特征曲线下面积(AUC)进行模型性能评价,并对构建模型的各环境变量进行重要性评估,以及预测甘肃省内脏利什曼病传播风险分布区域。结果2015-2021年甘肃省共报告368例内脏利什曼病病例,其中,89.13%(328/368)集中在陇南市和甘南藏族自治州(甘南州);2017年病例数达到高峰(79例,21.47%)。构建模型具有较高的预测准确度(AUC=0.985)。模型分析结果显示,影响甘肃省内脏利什曼病分布的主要气候变量为最冷季度平均温度(贡献值为3.1),地理变量为土地利用类型(贡献值为52.6)和植被覆盖类型(贡献值为8.5),社会经济变量为人口数(贡献值为14.3)。传播风险分布结果显示,高、中、低风险区从甘肃省南部向西北部呈现逐渐过渡的接壤分布特点。高风险区主要集中在甘肃省陇南市中南部和甘南州南部,占全省面积的0.18%;中、低风险区分别占全省面积的0.48%和2.47%,无风险区占96.87%。结论生态位模型预测甘肃省内脏利什曼病传播呈现点状分散、局部高聚集性分布特征,应加强对陇南市和甘南州等高风险区的监测和防控。 Objective To analyze and predict the transmission risk of visceral leishmaniasis in Gansu Province based on an ecological niche model,providing a basis for the development of precise prevention and control measures and epidemic surveillance.Methods The information of reported cases of visceral leishmaniasis in Gansu Province from 2015 to 2021 were collected from the National Infectious Disease Reporting Information Management System,and the longitude and latitude coordinates of the distribution points of cases and the data of 19 climate variables,5 geographical variables and 2 socio-economic variables within the region were obtained.Based on an ecological niche model,a model for predicting the transmission risk of visceral leishmaniasis was constructed using the maximum entropy algorithm(MaxEnt),and its performance was evaluated by the area under the receiver operating characteristic curve(AUC).Then the importance of each environmental variable of the model was evaluated,and the distribution area of visceral leishmaniasis transmission risk in Gansu Province was predicted.Results A total of 368 cases of visceral leishmaniasis were reported in Gansu Province from 2015 to 2021,of which 89.13%(328/368)were from Longnan City and Gannan Tibetan Autonomous Prefecture(Gannan Prefecture).The number of cases peaked in 2017(79 cases,21.47%).The model had high prediction accuracy(AUC=0.985).The results of model analysis showed that the important climate variable affecting the distribution of visceral leishmaniasis was the average temperature in the coldest quarter(contribution value of 3.1),the geographical variables were land use type(contribution value of 52.6)and vegetation cover type(contribution value of 8.5),and the socio-economic variable was population size(contribution value of 14.3).The distribution results of transmission risk showed that high,medium and low risk areas exhibited a gradual transition from the southern part to the northwest part of Gansu Province.The high risk areas were mainly located in the central and southern parts of Longnan City and the southern part of Gannan Prefecture,accounting for 0.18%of the total area of the province.Medium and low risk areas accounted for 0.48%and 2.47%of the total area of the province,respectively;and areas with no risk accounted for 96.87%.Conclusions The ecological niche model predicts that the spread of visceral leishmaniasis in Gansu Province is characterized by point like dispersion and local high aggregation distribution.It is necessary to strengthen monitoring and prevention and control of high-risk areas such as Longnan City and Gannan Prefecture.
作者 余大为 李凡 何爱伟 冯宇 侯言东 朱亚东 Yu Dawei;Li Fan;He Aiwei;Feng Yu;Hou Yandong;Zhu Yadong(Parasitic Disease Prevention and Control Department,Gansu Provincial Center for Disease Control and Prevention,Lanzhou 730020,China)
出处 《中华地方病学杂志》 CAS 北大核心 2023年第9期697-703,共7页 Chinese Journal of Endemiology
基金 国家自然科学基金(81703171) 甘肃省中医药科研课题(GZKP-2022-31)。
关键词 利什曼病 内脏 生态位模型 环境因素 传播风险 Leishmaniasis,visceral Ecological niche model Environmental factors Transmission risk
作者简介 通信作者:李凡,Email:1226408065@qq.com。
  • 相关文献

参考文献12

二级参考文献188

共引文献403

同被引文献80

引证文献4

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部