期刊文献+

基于多维数据与深度学习的区域发电碳排放因子预测研究 被引量:4

Prediction on the regional carbon emission factor for power generation based on multi-dimensional data and deep learning
在线阅读 下载PDF
导出
摘要 在碳交易背景下,对电力企业进行实时、准确、全面的碳排放计量是开展发电结构调整、技术创新、供需联动、碳交易等工作的基础。受制于数据采集与传输系统的限制,动态碳排放因子的测算与预测目前仍难以完全实现。采用深度学习方法,将双重注意力机制与传统的门控循环单元(GRU)神经网络融合,构建了GRU-Attention预测模型。以合肥市2022年的电力数据为样本,结合合肥市平均气象数据,对GRU模型、长短时记忆(LSTM)模型、基于双重注意力机制的LSTM-Attention模型和GRU-Attention模型进行训练,以实现小时级别的碳排放因子预测。利用不同的评价指标对4种预测模型进行对比,与GRU,LSTM,LSTM-Attention模型相比,GRU-Attention模型预测精度更高,有助于实现发电碳排放因子的中长期预测。 With the support of carbon trading policy,the real-time,accurate and comprehensive measurement on power enterprises'carbon emissions is the basis for structure adjustment,technological innovation,supply and demand side interaction and carbon trading of power generation industry.The calculation and prediction on dynamic carbon emission factors is still limited by the data collection and transmission system.By taking deep learning,a prediction model,called GRU-Attention model,was built by combining dual attention mechanism with traditional Gate Recurrent Unit(GRU)neural network.Then,a GRU model,a Long Short-Term Memory(LSTM)model,a LSTMmodel based on dual attention mechanism(LSTM-Attention)and a GRU-Attention model were constructed and trained by the power data of Hefei in 2022 and average meteorological data of Hefei,to achieve hourly prediction on carbon emission factor.Comparing the prediction results made by the four models above,it is found that the prediction made by the GRU-Attention model is more accurate than that of the other three models,which can advance the mid-and long-term prediction on carbon emission factor.
作者 李方一 李楠 周琰 谢武 LI Fangyi;LI Nan;ZHOU Yan;XIE Wu(School of Management,Hefei University of Technology,Hefei 230009,China;Anhui Key Laboratory of Philosophy and Social Sciences of Energy and Environment Smart Management and Green Low Carbon Development,Hefei University of Technology,Hefei 230009,China)
出处 《综合智慧能源》 CAS 2023年第8期11-17,共7页 Integrated Intelligent Energy
基金 国家自然科学基金项目(71902051)。
关键词 碳排放计量 碳排放因子 门控循环单元 双重注意力机制 深度学习 中长期预测 measurement of carbon emissions carbon emission factor Gate Recurrent Unit dual attention mechanism deep learning mid-and long-term prediction
作者简介 李方一(1985),男,副教授,博士,从事大数据与能源环境管理等方面的研究,fyli@hfut.edu.cn。
  • 相关文献

参考文献12

二级参考文献166

  • 1王小龙,郭振,黄海舟,任健,孙友源,郑小美.韩国电厂碳排放量核算及其不确定度研究[J].给水排水,2021,47(S01):270-275. 被引量:5
  • 2张安华.中国电力工业节能降耗影响因素分析[J].电力需求侧管理,2006,8(6):1-4. 被引量:49
  • 3Ann P. Kinzig and Daniel M. Karnmen, "National Trajectories of Carbon Emissions: analysis of proposals to foster the transition to low-carbon economies", Global Environmental Change, Vol. 8, No. 3, 183-208, 1998.
  • 4DTI (Department of Trade and Industry), Energy White Paper: Our Energy Future--Create a Low Carbon Economy. London: TSO, 2003.
  • 5Stern Nicholas, Stern Review on the Economics of Climate Change, Cambridge University Press, 2007.
  • 6英国驻华使馆的相关信息(http://ukinchina.fco.gov.uk/zh/working-with-china/spf/).
  • 7周生贤.《低碳经济论》(张坤民,潘家华,崔大鹏主编.中国环境科学出版社,2008年).
  • 8中国环境与发展国际合作委员会.《低碳经济的国际经验和中国实践》研究报告,2008年12月.
  • 9见世晃资源研究所(WRI)气候分析指标工具(C1imate Analysis Indicator Tool).网址为:http://cait.wri.org/.
  • 10潘家华,庄贵阳等.《低碳经济的概念辨识及评价指标体系》,内部报告,2009年.

共引文献818

同被引文献104

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部