期刊文献+

基于VMD-SDP融合图像和CNN的往复压缩机故障诊断 被引量:4

Fault Diagnosis of Reciprocating Compressors Based on VMD-SDP Fusion Image and CNN
在线阅读 下载PDF
导出
摘要 为提高往复压缩机的故障诊断精度,结合变分模态分解(Variational Mode Decomposition,VMD)、SDP变换和卷积神经网络(Convolution Neural Networ,CNN),提出基于VMD-SDP融合图像和CNN的往复压缩机故障诊断新方法。方法第一步通过VMD将信号自适应分解成6个本征模态函数分量(Intrinsic Mode Functions,IMF),第二步通过SDP变换将6个IMF分量变换成极坐标下的图像,从而得到VMD-SDP融合图像,第三步通过CNN对VMD-SDP融合图像进行识别,得到最终的诊断结果。往复压缩机诊断实例结果表明,所提方法在耗时更少的情况下,得到100%的诊断精度,比其他几种方法更具优势。 In order to improve fault diagnosis accuracy of reciprocating compressors,a new fault diagnosis method based on the combination of variational mode decomposition(VMD),SDP transformation and convolution neural network(CNN)was proposed.Firstly,the signal was decomposed into six intrinsic mode functions(IMF)adaptively by VMD.Then,the six IMF were transformed into polar images by SDP transformation to obtain VMD-SDP fusion images.Finally,the VMD-SDP fusion images were recognized by CNN to obtain the final diagnosis results.The diagnosis result of reciprocating compressor shows that the proposed method can obtain 100%diagnosis accuracy with less computer time consuming,which is more advantageous than other methods.
作者 王海峰 王则林 WANG Haifeng;WANG Zelin(School of Electronic Information Engineering,Nantong Vocational College,Nantong 226007,Jiangsu,China;School of Information Science and Technology,Nantong University,Nantong 226019,Jiangsu,China)
出处 《噪声与振动控制》 CSCD 北大核心 2023年第4期116-121,共6页 Noise and Vibration Control
基金 国家自然科学基金青年资助项目(62004108)。
关键词 故障诊断 VMD SDP CNN 往复压缩机 fault diagnosis VMD SDP CNN reciprocating compressor
作者简介 王海峰(1980-),男,江苏省如皋市人,讲师,专业方向为人工智能算法及应用、智能故障诊断技术、软件设计与开发。E-mail:ntwhf0513@163.com。
  • 相关文献

参考文献11

二级参考文献109

  • 1王冰,李洪儒,许葆华.基于数学形态学分段分形维数的电机滚动轴承故障模式识别[J].振动与冲击,2013,32(19):28-31. 被引量:14
  • 2贾继德.基于小波对称极坐标方法的发动机异响故障特征提取研究[J].汽车工程,2013,35(11):1035-1037. 被引量:7
  • 3丁莉雅,刘济林.基于图像处理技术的智能火车字符识别系统[J].电视技术,2003,27(5):81-83. 被引量:4
  • 4高京卫,韩毅.往复式压缩机气阀失效形式及故障诊断[J].天然气技术,2007,1(6):74-76. 被引量:19
  • 5Shibata K, Takahashi A, Shirai T. Fault diagnosis of rotating ma- chinery through visualization of sound signals[J]. Mechanical Sys- tems and Signal Processing, 2000, 14(2) : 229 -241.
  • 6Delvecchio S, D'Elia G, Mucchi E,etal. Advanced signal process- ing tools for the vibratory surveillance of assembly faults in diesel engine cold tests [ J ]. ASME Journal of Vibration and Acoustics, 2010, 132:1 -10.
  • 7Wua Jianda, Chuangb Chaoq. Fault diagnosis of internal combus- tion engines using visual dot patterns of acoustic and vibration sig- nals[J]. NDT Int, 2005, 38(8) : 605 -614.
  • 8Li Xu, Zheng A'nan, Zhang Xu-nan, et al. Rolling element bearing fault detection using support vector machine with improved ant colony optimization [ J ]. Measurement, 2013, 46:2726 - 2734.
  • 9Shibata K,Takahashi A, Shirai T. Fault diagnosis of rotating machinery through visualization of sound signals [ J ]. Mechanical Systems and Signal Processing, 2000,14 (2) :229 -241.
  • 10Wu Jian-da, Chuang Chao-qin. Fault diagnosis of ifiternal combustion engines using visual dot patterns of acoustic and vibration signals[J]. NDT Int. ,2005,38(8) :605 -614.

共引文献141

同被引文献49

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部