摘要
针对传统的硬阈值奇异值分解降噪法(HSVD)阈值选取主观性较强、自适应性较弱、易丢失信号特征的问题,首先提出一种自适应的硬阈值选取算法;其次,利用一种非等量最优权值收缩的软阈值奇异值分解降噪(SSVD)方法,并结合HSVD,形成一种混合阈值的奇异值分解(SHSVD)降噪方法;最后再结合所提出的一种幅值抑制(AS)算法用于突出信号的故障冲击特征SHSVD-AS。利用该方法对风电传动系统齿轮箱故障信号进行分析,仿真、实测信号的结果均表明,在强噪声环境下,相较于传统的HSVD、VMD-HSVD方法,SHSVD-AS在风电齿轮故障诊断上性能较好。
Aiming at the problems of traditional hard threshold singular value decomposition(HSVD)noise reduction have strong subjectivity,weak adaptability and easy to lose signal characteristics,this paper firstly proposes an adaptive hard threshold selection algorithm.Then,a soft-hard threshold singular value decomposition(SHSVD)denoising method is formed by combining an unequal optimal weight shrinkage of soft threshold singular value decomposition(SSVD)denoising method with HSVD.Finally,this paper creates an amplitude suppression(AS)algorithm to highlight the impact characteristics of fault signal denoised by SHSVD,which is SHSVD-AS.This method is used to analyze the gearbox fault signal of wind power transmission system.The test results of simulation and measured signals both indicate that SHSVD-AS has better performance in wind power gear fault diagnosis than traditional HSVD and VMD-HSVD methods under a strong noise enviroment.
作者
凌峰
杨宏强
邓艾东
王鹏程
董路楠
卞文彬
Ling Feng;Yang Hongqiang;Deng Aidong;Wang Pengcheng;Dong Lunan;Bian Wenbin(National Engineering Research Center of Power Generation Control and Safety,School of Energy and Environment,Southeast University,Nanjing 210096,China;China Energy Jiangsu Power Co.,Ltd.,Nanjing 215433,China)
出处
《太阳能学报》
EI
CAS
CSCD
北大核心
2023年第6期477-483,共7页
Acta Energiae Solaris Sinica
基金
国家自然科学基金(51875100)
江苏省重点研发计划(BE2020034)
江苏省碳达峰碳中和科技创新专项资金(BA2022214)。
关键词
风电机组
故障诊断
奇异值分解
齿轮箱
硬阈值
软阈值
幅值抑制
wind turbines
fault diagnosis
singular value decomposition
gearbox
hard threshold
soft threshold
amplitude suppression
作者简介
通讯作者:邓艾东(1968—)男,博士、教授,主要从事故障诊断与测控系统方面的研究。dnh@seu.edu.cn。