期刊文献+

基于声信号人耳听觉谱特征的风机故障诊断 被引量:12

Fault diagnosis for fan based on auditory spectrum feature of sound signal
在线阅读 下载PDF
导出
摘要 提出了风机噪声信号的人耳听觉谱特征提取方法,利用人耳听觉谱特征模拟人耳听觉系统的特性,采用支持向量机分类器进行风机故障的分类识别;设计了基于听觉原理和支持向量机分类器的风机故障诊断系统,并应用于风机故障诊断。文中所用实验数据是在工厂现场采集获得,对现场实测数据的识别实验证明,人耳听觉谱特征可有效用于风机故障诊断,可正确识别99.18%的正常机器,故障类型诊断的正确识别率在91%以上。 In this paper, an auditory spectrum feature extraction method is proposed The psychophysics of hearing is simulated by auditory spectrum feature. Support vector machine (SVM) is used for the identification of fan fault. A fault diagnosis system is designed based on auditory principle and SVM, and is also applied to fault diagnosis for fan. A series of experiments were carried with the real data measured from a factory environment. The results show that the auditory spectrum feature is effective for fan fault diagnosis. The classification accuracy for normal fans is about 99.18% . and the classification accuracy of the types for faulty fans is above 91%.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2009年第1期175-179,共5页 Chinese Journal of Scientific Instrument
关键词 人耳听觉谱特征 风机故障诊断 支持向量机 auditory spectrum feature fault diagnosis of fan support vector machine
作者简介 杨宏晖,于2006年在西北工业大学获得博士学位。现为西北工业大学副教授,主要研究方向为自动测试测控技术、模式识别、声信号信息处理。E—mail:hhyang@nwpu.edu.cn侯宏,于1999年在西北工业大学获得博士学位,现为西北工业大学教授。主要研究方向为噪声与振动控制,时域声阻抗测量等。E—mail:houhong@nwpu.edu.cn
  • 相关文献

参考文献9

  • 1胡静涛,郭前进.基于线调频小波变换的旋转机械故障诊断[J].仪器仪表学报,2006,27(z1):395-398. 被引量:6
  • 2吕琛,王桂增,邱庆刚.基于声信号小波包分析的故障诊断[J].自动化学报,2004,30(4):554-559. 被引量:15
  • 3JING L. Feature extraction of machine sound using wavelet and its application in fault diagnosis [ J ]. NDT & E International, 2001,34( 1 ) :25-30.
  • 4BENKO U, PETROVI J, JURII A. An approach to fault diagnosis of vacuum cleaner motors based on sound analysis [ J ]. Mechanical Systems and Signal Processing, 2005,19( 2 ) :427-445.
  • 5SHIBATA K, TAKAHASHI A, SHIRAI T. Fault diagnosis of rotating machinery through visualization of sound signals[J]. Mechanical Systems and Signal Processing, 2000,14 ( 2 ) : 229 -241.
  • 6WIDODO A, YANG B S. Support vector machine in machine condition monitoring and fault diagnosis [ J ]. Mechanical Systems and Signal Processing, 2007,21 (6) : 2560-2574.
  • 7VAPNIK V. The nature of statistical learning theory [ M ]. New York : Springer-Verlag, 2000.
  • 8ZWICKER E, FADTL H. Psychoacoustics facts and models [ M ]. New York : Springer-Verlag, 1999.
  • 9HERMANSK H. Perceptual linear predictive (PLP) analysis of speech [ C ]. J. Acoust. Soc. Am. 1990,87 (4) :1738-1751.

二级参考文献14

  • 1耿中行,屈梁生.小波包原理及其在机械故障诊断中的应用[J].信号处理,1994,10(4):244-249. 被引量:23
  • 2殷勤业,倪志芳,钱世锷,陈大庞.自适应旋转投影分解法[J].电子学报,1997,25(4):52-58. 被引量:40
  • 3[1]L.Cohen.Time-frequency distribution-a review[J],Proc.IEEE.1989,77:941-981.
  • 4[2]L.Cohen.Time-Frequency Analysis[M].PrenticeHall,Englewood Cliffs,NJ,1995.
  • 5[3]G B Folland.Harmonic analysis in Phase Space[M].Princeton,NJ:Princeton Univ.Press,1989.
  • 6[4]S.Qian,D.Chen.Signal representation in adaptive Gaussian functions and adaptive spectrogram[C],in Proc.Twenty-Seventh Annu.Conf.Inform.Sci.Syst..Baltimore,MD,Mar.1993:59-65.
  • 7[5]S.Qian and D.Chen,Signal representation using adaptive normalized Gaussian functions[J],Signal Process.,1994,36(1):1-11.
  • 8[6]S.Mallat and Z.Zhang,Matching pursuit with timefrequency dictionaries[J],IEEE Trans.Signal Processing,1993,41:3397-3415.
  • 9[8]Qian Shie,Chen Dapang,Yin Qinye.Adaptive Chirplet Based Signal Approximation[J].IEEE Trans on Acoustics Speech and Signal Processing,1998,3(5):1781-1784.
  • 10[10]Q.Yin,S.Qian,and A.Feng,A fast refinement for adaptive Gaussian chirplet decomposi-tion[J],IEEE Trans.Signal Processing,2002,50(6):1298-1306.

共引文献17

同被引文献110

引证文献12

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部