期刊文献+

基于CAE和AGRU的滚动轴承退化趋势预测 被引量:3

Degradation trend prediction of rolling bearings based on CAE and AGRU
在线阅读 下载PDF
导出
摘要 针对旋转机械中滚动轴承退化趋势预测存在健康指标构建依赖先验知识、预测精度低等问题,提出了基于卷积自编码器(convolutional auto-encodes,CAE)和融合注意力机制的门控循环单元(attention gated recurrent unit,AGRU)的滚动轴承退化趋势预测方法。首先,该方法通过快速傅里叶变换(fast Fourier transform,FFT)将滚动轴承时域信号转换为频域信号,卷积自编码器从频域信号中自适应提取特征,编码特征通过评估选择构建健康指标(health indicators,HI),在此基础上,将健康指标输入融入注意力的门控循环单元网络(gate recurrent unit,GRU)模型,剪枝算法对模型参数进行优化,完成了滚动轴承性能退化趋势预测。结果表明,所提的方法能获得更准确的滚动轴承退化趋势预测。 Aiming at problems of health indictor construction depending on prior knowledge and prediction accuracy being low for rolling bearing performance degradation trend prediction methods in rotating machinery,a prediction method for rolling bearing degradation trend based on convolutional auto-encodes(CAE)and attention gated recurrent unit(AGRU)was proposed.Firstly,the method converted the rolling bearing time domain signal into frequency domain signal with fast Fourier transform(FFT),and the features were extracted adaptively from frequency domain signal with convolutional auto-encodes.Then,the health indicators were constructed from encoding features.Finally,the health indicators were input into the attention gated recurrent unit mode,and the pruning algorithm were used to optimize the parameters to predict the performance degradation trend of rolling bearings.Results show that the proposed method can obtain more accurate prediction results for rolling bearing performance degradation trend.
作者 焦玲玲 陈捷 刘连华 JIAO Lingling;CHEN Jie;LIU Lianhua(School of Mechanical and Power Engineering,Nanjing Tech University,Nanjing 211816,China;Jiangsu Province Key Laboratory of Industrial Equipment Manufacturing and Digital Control Technology,Nanjing Tech University,Nanjing 211816,China)
出处 《振动与冲击》 EI CSCD 北大核心 2023年第12期109-117,共9页 Journal of Vibration and Shock
基金 国家重点研发计划(2019YFB20052004)。
关键词 滚动轴承 退化趋势预测 卷积自编码器(CAE) 门控循环单元(GRU) 注意力机制 rolling bearing degradation trend prediction convolutional auto-encoders(CAE) gated recurrent unit(GRU) attention mechanism
作者简介 第一作者:焦玲玲,女,硕士生,1998年生;通信作者:陈捷,女,博士,教授,1971年生。
  • 相关文献

参考文献7

二级参考文献58

  • 1奚立峰,黄润青,李兴林,刘中鸿,李杰.基于神经网络的球轴承剩余寿命预测[J].机械工程学报,2007,43(10):137-143. 被引量:58
  • 2Gebraeel N, Lawley M, Liu R, et al. Residual life predictions from vibration-based degradation signals: a neural network approach [ J ]. Industrial Electronics, IEEE Transactions on, 2004, 51(3): 694-700.
  • 3Janjarasjitt S, Ocak H, Loparo K A. Bearing condition diagnosis and prognosis using applied nonlinear dynamical analysis of machine vibration signal [ J ]. Journal of Sound and Vibration, 2008(317) : 112 -126.
  • 4Antoni J. Cyclic spectral analysis of rolling-element bearing signals: facts and fictions [ J ]. Journal of Sound and Vibration, 2007, 304 ( 3 - 5 ) : 497 - 529.
  • 5Dong S, Luo T. Bearing degradation process prediction based on the PCA and optimized ES-SVM model [ J ]. Measurement, 2013, 46(9) : 3143 -3152.
  • 6Yan J, Guo C, Wang X. A dynamic multi-scale Markov model based methodology for remaining life prediction [ J ]. Mechanical Systems and Signal Processing, 2011, 25 (4) : 1364 - 1376.
  • 7He X F, Niyogi P. Locality preserving projections, in: Proceedings of the Conference on Advances in Neural Information Processing Systems, 8 - 13 December 2003, Vancouver [ C]. Canada, MIT Press, Cambridge, MA, 2004:1 -8.
  • 8Lee J, Qiu H, Yu G, et al. Rexnord technical services, "bearing data set", IMS, university of cincinnati, NASA ames prognostics data repository, (http ://ti. arc. nasa. gov/ project/prognostics-data-repository), NASA Ames, Moffett Field, CA, 2007.
  • 9郭磊,陈进.小波包熵在设备性能退化评估中的应用[J].机械科学与技术,2008,27(9):1203-1206. 被引量:10
  • 10何强,蔡洪,韩壮志,尚朝轩.基于非线性流形学习的ISAR目标识别研究[J].电子学报,2010,38(3):585-590. 被引量:17

共引文献158

同被引文献35

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部